Abstract

In this Letter, we propose and experimentally demonstrate the generation of second-order full Poincaré beams and its applications in two-dimensional flattop beam shaping with spatially variant polarization under low NA focusing condition. High-quality flattop profiles with steep edge roll-off can be obtained with this technique. The experiment results also demonstrate that flattop profile can be maintained for different input beam sizes by conveniently rotating a half-wave plate.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. M. Dickey and S. C. Holswade, Laser Beam Shaping: Theory and Techniques (Marcel Dekker, 2000).
    [CrossRef]
  2. L. A. Romero and F. M. Dickey, J. Opt. Soc. Am. A 13, 751(1996).
    [CrossRef]
  3. C.-Y. Han, Y. Ishii, and K. Murata, Appl. Opt. 22, 3644(1983).
    [CrossRef] [PubMed]
  4. X. Tan, B. Y. Gu, G. Z. Yang, and B. Z. Dong, Appl. Opt. 34, 1314 (1995).
    [CrossRef] [PubMed]
  5. Q. Zhan and J. R. Leger, Opt. Express 10, 324 (2002).
    [PubMed]
  6. B. Hao and J. R. Leger, Opt. Express 15, 3550 (2007).
    [CrossRef] [PubMed]
  7. B. Hao and J. Leger, Appl. Opt. 46, 8211 (2007).
    [CrossRef] [PubMed]
  8. A. M. Beckley, T. G. Brown, and M. A. Alonso, Opt. Express 18, 10777 (2010).
    [CrossRef] [PubMed]
  9. Q. Zhan, Adv. Opt. Photon. 1, 1 (2009).
    [CrossRef]
  10. J. Dai and Q. Zhan, Proc. SPIE 7062, 70620D (2008).
    [CrossRef]
  11. A. K. Spilman and T. G. Brown, Appl. Opt. 46, 61 (2007).
    [CrossRef]

2010 (1)

2009 (1)

2008 (1)

J. Dai and Q. Zhan, Proc. SPIE 7062, 70620D (2008).
[CrossRef]

2007 (3)

2002 (1)

1996 (1)

1995 (1)

1983 (1)

Alonso, M. A.

Beckley, A. M.

Brown, T. G.

Dai, J.

J. Dai and Q. Zhan, Proc. SPIE 7062, 70620D (2008).
[CrossRef]

Dickey, F. M.

L. A. Romero and F. M. Dickey, J. Opt. Soc. Am. A 13, 751(1996).
[CrossRef]

F. M. Dickey and S. C. Holswade, Laser Beam Shaping: Theory and Techniques (Marcel Dekker, 2000).
[CrossRef]

Dong, B. Z.

Gu, B. Y.

Han, C.-Y.

Hao, B.

Holswade, S. C.

F. M. Dickey and S. C. Holswade, Laser Beam Shaping: Theory and Techniques (Marcel Dekker, 2000).
[CrossRef]

Ishii, Y.

Leger, J.

Leger, J. R.

Murata, K.

Romero, L. A.

Spilman, A. K.

Tan, X.

Yang, G. Z.

Zhan, Q.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Intensity and polarization map of a second-order FP beam.

Fig. 2
Fig. 2

(a) Theoretical calculation and (b) experimental result of a flattop profile produced by superimposing a fundamental Gaussian beam and a second-order FP beam.

Fig. 3
Fig. 3

Experimental setup for generating a flattop profile by superimposing a fundamental Gaussian beam and a second-order FP beam. Laser, linearly polarized He–Ne laser; pinhole, adjust the input beam size; LP, linear polarizer; HW, half-wave plate; BS, beam splitter; SLM, liquid crystal spatial light modulator (Boulder Nonlinear System P512-632); CCD, Spiricon camera. (Inset) Topological charge of a + 2 phase pattern with the lens phase pattern superimposed displayed on the SLM.

Fig. 4
Fig. 4

Flattop profile of three different input beam diameters: (a)  4.5 mm ( β = 4.099 ), (b)  5 mm ( β = 4.71 ), and (c)  6 mm ( β = 5.227 ).

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

LG 00 ( r , z ) = A 0 w 0 w ( z ) exp ( j ( k z φ ( z ) ) r 2 ( 1 w ( z ) 2 + j k 2 R ( z ) ) ) ,
LG 02 ( r , z ) = 2 A 0 r 2 w ( z ) 2 w 0 w ( z ) exp ( j ( k z 3 φ ( z ) ) r 2 ( 1 w ( z ) 2 + j k 2 R ( z ) ) j 2 ϕ ) ,
E FP ( r , z ) = cos γ LG 00 x ^ + sin γ LG 02 y ^ = ( x ^ + 2 tan γ r 2 w ( z ) 2 exp j ( 2 φ ( z ) 2 ϕ ) y ^ ) · cos γ A 0 w 0 w ( z ) exp ( j ( k z φ ( z ) ) r 2 ( 1 w ( z ) 2 + j k 2 R ( z ) ) ) .
E FP ( r , z ) = C ( 1 2 tan γ r 2 w ( z ) 2 exp j ( 2 φ ( z ) 2 ϕ ) y ^ ) .
ρ 0 = 2 tan γ r 2 w ( z ) 2 ,
δ = 2 φ ( z ) 2 ϕ .

Metrics