Abstract

In this study, we have developed a tunable Lloyd–mirror interferometer with two degrees of freedom, in contrast to a traditional system with one degree of freedom. This new Lloyd–mirror interferometer allows an angular rotation of the mirror independently from that of a sample stage, resulting in an increased pattern coverage area with tunable pattern periodicity. Both theoretical and experimental results verify that the tunable characteristic of the modified configuration enhances the nanopatterning capabilities of the Lloyd–mirror interference lithography system especially in achieving greater pattern coverage area for larger pattern periodicities.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. I. Smith, Physica E 11, 104 (2001).
    [CrossRef]
  2. S. R. J. Brueck, Proc. IEEE 93, 1704 (2005).
    [CrossRef]
  3. J. H. Jang, C. K. Ullal, M. Maldovan, T. Gorishnyy, S. Kooi, C. Y. Koh, and E. L. Thomas, Adv. Funct. Mater. 17, 3027(2007).
    [CrossRef]
  4. R. Murillo, H. A. van Wolferen, L. Abelmann, and J. C. Lodder, Microelectron. Eng. 78–79, 260 (2005).
    [CrossRef]
  5. Q. Xie, M. H. Hong, H. L. Tan, G. X. Chen, L. P. Shi, and T. C. Chong, J. Alloys Compd. 449, 261 (2008).
    [CrossRef]
  6. Y. Zhou, M. H. Hong, J. Y. H. Fuh, L. Lu, and B. S. Lukiyanchuk, Phys. Scr. T129, 35 (2007).
    [CrossRef]
  7. R. A. Pizarro, M.S. thesis (University of Maryland, 2007).
  8. S. Kuiper, H. Van Wolferen, C. Van Rijn, W. Nijdam, G. Krijnen, and M. Elwenspoek, J. Micromech. Microeng. 11, 33 (2001).
    [CrossRef]
  9. J. De Boor, N. Geyer, U. Gosele, and V. Schmidt, Opt. Lett. 34, 1783 (2009).
    [CrossRef] [PubMed]
  10. J. B. Yeo, S. D. Yun, N. H. Kim, and H. Y. Lee, J. Vac. Sci. Technol. B 27, 1886 (2009).
    [CrossRef]
  11. H. H. Solak, J. Phys. D: Appl. Phys. 39, R171 (2006).
    [CrossRef]
  12. A. Ritucci, A. Reale, P. Zuppella, L. Reale, P. Tucceri, G. Tomassetti, P. Bettotti, and L. Pavesi, J. Appl. Phys. 102, 034313 (2007).
    [CrossRef]
  13. J. De Boor, D. S. Kim, and V. Schmidt, Opt. Lett. 35, 3450 (2010).
    [CrossRef] [PubMed]
  14. C. H. Choi and C. J. Kim, Phys. Rev. Lett. 96, 066001 (2006).
    [CrossRef] [PubMed]
  15. C. H. Choi, S. H. Hagvall, B. M. Wu, J. C. Y. Dunn, R. E. Beygui, and C. J. Kim, Biomaterials 28, 1672 (2007).
    [CrossRef]
  16. M. E. Walsh, Ph.D. thesis (MIT, 2004).
  17. I. Wathuthanthri and C. H. Choi, in 2009 ASME International Mechanical Engineering Congress & Exposition (ASME, 2009), paper IMECE2009-10895.
  18. C. H. Choi and C. J. Kim, Nanotechnology 17, 5326 (2006).
    [CrossRef]

2010 (1)

2009 (2)

J. De Boor, N. Geyer, U. Gosele, and V. Schmidt, Opt. Lett. 34, 1783 (2009).
[CrossRef] [PubMed]

J. B. Yeo, S. D. Yun, N. H. Kim, and H. Y. Lee, J. Vac. Sci. Technol. B 27, 1886 (2009).
[CrossRef]

2008 (1)

Q. Xie, M. H. Hong, H. L. Tan, G. X. Chen, L. P. Shi, and T. C. Chong, J. Alloys Compd. 449, 261 (2008).
[CrossRef]

2007 (4)

Y. Zhou, M. H. Hong, J. Y. H. Fuh, L. Lu, and B. S. Lukiyanchuk, Phys. Scr. T129, 35 (2007).
[CrossRef]

J. H. Jang, C. K. Ullal, M. Maldovan, T. Gorishnyy, S. Kooi, C. Y. Koh, and E. L. Thomas, Adv. Funct. Mater. 17, 3027(2007).
[CrossRef]

C. H. Choi, S. H. Hagvall, B. M. Wu, J. C. Y. Dunn, R. E. Beygui, and C. J. Kim, Biomaterials 28, 1672 (2007).
[CrossRef]

A. Ritucci, A. Reale, P. Zuppella, L. Reale, P. Tucceri, G. Tomassetti, P. Bettotti, and L. Pavesi, J. Appl. Phys. 102, 034313 (2007).
[CrossRef]

2006 (3)

C. H. Choi and C. J. Kim, Nanotechnology 17, 5326 (2006).
[CrossRef]

C. H. Choi and C. J. Kim, Phys. Rev. Lett. 96, 066001 (2006).
[CrossRef] [PubMed]

H. H. Solak, J. Phys. D: Appl. Phys. 39, R171 (2006).
[CrossRef]

2005 (2)

R. Murillo, H. A. van Wolferen, L. Abelmann, and J. C. Lodder, Microelectron. Eng. 78–79, 260 (2005).
[CrossRef]

S. R. J. Brueck, Proc. IEEE 93, 1704 (2005).
[CrossRef]

2001 (2)

H. I. Smith, Physica E 11, 104 (2001).
[CrossRef]

S. Kuiper, H. Van Wolferen, C. Van Rijn, W. Nijdam, G. Krijnen, and M. Elwenspoek, J. Micromech. Microeng. 11, 33 (2001).
[CrossRef]

Abelmann, L.

R. Murillo, H. A. van Wolferen, L. Abelmann, and J. C. Lodder, Microelectron. Eng. 78–79, 260 (2005).
[CrossRef]

Bettotti, P.

A. Ritucci, A. Reale, P. Zuppella, L. Reale, P. Tucceri, G. Tomassetti, P. Bettotti, and L. Pavesi, J. Appl. Phys. 102, 034313 (2007).
[CrossRef]

Beygui, R. E.

C. H. Choi, S. H. Hagvall, B. M. Wu, J. C. Y. Dunn, R. E. Beygui, and C. J. Kim, Biomaterials 28, 1672 (2007).
[CrossRef]

Brueck, S. R. J.

S. R. J. Brueck, Proc. IEEE 93, 1704 (2005).
[CrossRef]

Chen, G. X.

Q. Xie, M. H. Hong, H. L. Tan, G. X. Chen, L. P. Shi, and T. C. Chong, J. Alloys Compd. 449, 261 (2008).
[CrossRef]

Choi, C. H.

C. H. Choi, S. H. Hagvall, B. M. Wu, J. C. Y. Dunn, R. E. Beygui, and C. J. Kim, Biomaterials 28, 1672 (2007).
[CrossRef]

C. H. Choi and C. J. Kim, Nanotechnology 17, 5326 (2006).
[CrossRef]

C. H. Choi and C. J. Kim, Phys. Rev. Lett. 96, 066001 (2006).
[CrossRef] [PubMed]

I. Wathuthanthri and C. H. Choi, in 2009 ASME International Mechanical Engineering Congress & Exposition (ASME, 2009), paper IMECE2009-10895.

Chong, T. C.

Q. Xie, M. H. Hong, H. L. Tan, G. X. Chen, L. P. Shi, and T. C. Chong, J. Alloys Compd. 449, 261 (2008).
[CrossRef]

De Boor, J.

Dunn, J. C. Y.

C. H. Choi, S. H. Hagvall, B. M. Wu, J. C. Y. Dunn, R. E. Beygui, and C. J. Kim, Biomaterials 28, 1672 (2007).
[CrossRef]

Elwenspoek, M.

S. Kuiper, H. Van Wolferen, C. Van Rijn, W. Nijdam, G. Krijnen, and M. Elwenspoek, J. Micromech. Microeng. 11, 33 (2001).
[CrossRef]

Fuh, J. Y. H.

Y. Zhou, M. H. Hong, J. Y. H. Fuh, L. Lu, and B. S. Lukiyanchuk, Phys. Scr. T129, 35 (2007).
[CrossRef]

Geyer, N.

Gorishnyy, T.

J. H. Jang, C. K. Ullal, M. Maldovan, T. Gorishnyy, S. Kooi, C. Y. Koh, and E. L. Thomas, Adv. Funct. Mater. 17, 3027(2007).
[CrossRef]

Gosele, U.

Hagvall, S. H.

C. H. Choi, S. H. Hagvall, B. M. Wu, J. C. Y. Dunn, R. E. Beygui, and C. J. Kim, Biomaterials 28, 1672 (2007).
[CrossRef]

Hong, M. H.

Q. Xie, M. H. Hong, H. L. Tan, G. X. Chen, L. P. Shi, and T. C. Chong, J. Alloys Compd. 449, 261 (2008).
[CrossRef]

Y. Zhou, M. H. Hong, J. Y. H. Fuh, L. Lu, and B. S. Lukiyanchuk, Phys. Scr. T129, 35 (2007).
[CrossRef]

Jang, J. H.

J. H. Jang, C. K. Ullal, M. Maldovan, T. Gorishnyy, S. Kooi, C. Y. Koh, and E. L. Thomas, Adv. Funct. Mater. 17, 3027(2007).
[CrossRef]

Kim, C. J.

C. H. Choi, S. H. Hagvall, B. M. Wu, J. C. Y. Dunn, R. E. Beygui, and C. J. Kim, Biomaterials 28, 1672 (2007).
[CrossRef]

C. H. Choi and C. J. Kim, Phys. Rev. Lett. 96, 066001 (2006).
[CrossRef] [PubMed]

C. H. Choi and C. J. Kim, Nanotechnology 17, 5326 (2006).
[CrossRef]

Kim, D. S.

Kim, N. H.

J. B. Yeo, S. D. Yun, N. H. Kim, and H. Y. Lee, J. Vac. Sci. Technol. B 27, 1886 (2009).
[CrossRef]

Koh, C. Y.

J. H. Jang, C. K. Ullal, M. Maldovan, T. Gorishnyy, S. Kooi, C. Y. Koh, and E. L. Thomas, Adv. Funct. Mater. 17, 3027(2007).
[CrossRef]

Kooi, S.

J. H. Jang, C. K. Ullal, M. Maldovan, T. Gorishnyy, S. Kooi, C. Y. Koh, and E. L. Thomas, Adv. Funct. Mater. 17, 3027(2007).
[CrossRef]

Krijnen, G.

S. Kuiper, H. Van Wolferen, C. Van Rijn, W. Nijdam, G. Krijnen, and M. Elwenspoek, J. Micromech. Microeng. 11, 33 (2001).
[CrossRef]

Kuiper, S.

S. Kuiper, H. Van Wolferen, C. Van Rijn, W. Nijdam, G. Krijnen, and M. Elwenspoek, J. Micromech. Microeng. 11, 33 (2001).
[CrossRef]

Lee, H. Y.

J. B. Yeo, S. D. Yun, N. H. Kim, and H. Y. Lee, J. Vac. Sci. Technol. B 27, 1886 (2009).
[CrossRef]

Lodder, J. C.

R. Murillo, H. A. van Wolferen, L. Abelmann, and J. C. Lodder, Microelectron. Eng. 78–79, 260 (2005).
[CrossRef]

Lu, L.

Y. Zhou, M. H. Hong, J. Y. H. Fuh, L. Lu, and B. S. Lukiyanchuk, Phys. Scr. T129, 35 (2007).
[CrossRef]

Lukiyanchuk, B. S.

Y. Zhou, M. H. Hong, J. Y. H. Fuh, L. Lu, and B. S. Lukiyanchuk, Phys. Scr. T129, 35 (2007).
[CrossRef]

Maldovan, M.

J. H. Jang, C. K. Ullal, M. Maldovan, T. Gorishnyy, S. Kooi, C. Y. Koh, and E. L. Thomas, Adv. Funct. Mater. 17, 3027(2007).
[CrossRef]

Murillo, R.

R. Murillo, H. A. van Wolferen, L. Abelmann, and J. C. Lodder, Microelectron. Eng. 78–79, 260 (2005).
[CrossRef]

Nijdam, W.

S. Kuiper, H. Van Wolferen, C. Van Rijn, W. Nijdam, G. Krijnen, and M. Elwenspoek, J. Micromech. Microeng. 11, 33 (2001).
[CrossRef]

Pavesi, L.

A. Ritucci, A. Reale, P. Zuppella, L. Reale, P. Tucceri, G. Tomassetti, P. Bettotti, and L. Pavesi, J. Appl. Phys. 102, 034313 (2007).
[CrossRef]

Pizarro, R. A.

R. A. Pizarro, M.S. thesis (University of Maryland, 2007).

Reale, A.

A. Ritucci, A. Reale, P. Zuppella, L. Reale, P. Tucceri, G. Tomassetti, P. Bettotti, and L. Pavesi, J. Appl. Phys. 102, 034313 (2007).
[CrossRef]

Reale, L.

A. Ritucci, A. Reale, P. Zuppella, L. Reale, P. Tucceri, G. Tomassetti, P. Bettotti, and L. Pavesi, J. Appl. Phys. 102, 034313 (2007).
[CrossRef]

Ritucci, A.

A. Ritucci, A. Reale, P. Zuppella, L. Reale, P. Tucceri, G. Tomassetti, P. Bettotti, and L. Pavesi, J. Appl. Phys. 102, 034313 (2007).
[CrossRef]

Schmidt, V.

Shi, L. P.

Q. Xie, M. H. Hong, H. L. Tan, G. X. Chen, L. P. Shi, and T. C. Chong, J. Alloys Compd. 449, 261 (2008).
[CrossRef]

Smith, H. I.

H. I. Smith, Physica E 11, 104 (2001).
[CrossRef]

Solak, H. H.

H. H. Solak, J. Phys. D: Appl. Phys. 39, R171 (2006).
[CrossRef]

Tan, H. L.

Q. Xie, M. H. Hong, H. L. Tan, G. X. Chen, L. P. Shi, and T. C. Chong, J. Alloys Compd. 449, 261 (2008).
[CrossRef]

Thomas, E. L.

J. H. Jang, C. K. Ullal, M. Maldovan, T. Gorishnyy, S. Kooi, C. Y. Koh, and E. L. Thomas, Adv. Funct. Mater. 17, 3027(2007).
[CrossRef]

Tomassetti, G.

A. Ritucci, A. Reale, P. Zuppella, L. Reale, P. Tucceri, G. Tomassetti, P. Bettotti, and L. Pavesi, J. Appl. Phys. 102, 034313 (2007).
[CrossRef]

Tucceri, P.

A. Ritucci, A. Reale, P. Zuppella, L. Reale, P. Tucceri, G. Tomassetti, P. Bettotti, and L. Pavesi, J. Appl. Phys. 102, 034313 (2007).
[CrossRef]

Ullal, C. K.

J. H. Jang, C. K. Ullal, M. Maldovan, T. Gorishnyy, S. Kooi, C. Y. Koh, and E. L. Thomas, Adv. Funct. Mater. 17, 3027(2007).
[CrossRef]

Van Rijn, C.

S. Kuiper, H. Van Wolferen, C. Van Rijn, W. Nijdam, G. Krijnen, and M. Elwenspoek, J. Micromech. Microeng. 11, 33 (2001).
[CrossRef]

Van Wolferen, H.

S. Kuiper, H. Van Wolferen, C. Van Rijn, W. Nijdam, G. Krijnen, and M. Elwenspoek, J. Micromech. Microeng. 11, 33 (2001).
[CrossRef]

van Wolferen, H. A.

R. Murillo, H. A. van Wolferen, L. Abelmann, and J. C. Lodder, Microelectron. Eng. 78–79, 260 (2005).
[CrossRef]

Walsh, M. E.

M. E. Walsh, Ph.D. thesis (MIT, 2004).

Wathuthanthri, I.

I. Wathuthanthri and C. H. Choi, in 2009 ASME International Mechanical Engineering Congress & Exposition (ASME, 2009), paper IMECE2009-10895.

Wu, B. M.

C. H. Choi, S. H. Hagvall, B. M. Wu, J. C. Y. Dunn, R. E. Beygui, and C. J. Kim, Biomaterials 28, 1672 (2007).
[CrossRef]

Xie, Q.

Q. Xie, M. H. Hong, H. L. Tan, G. X. Chen, L. P. Shi, and T. C. Chong, J. Alloys Compd. 449, 261 (2008).
[CrossRef]

Yeo, J. B.

J. B. Yeo, S. D. Yun, N. H. Kim, and H. Y. Lee, J. Vac. Sci. Technol. B 27, 1886 (2009).
[CrossRef]

Yun, S. D.

J. B. Yeo, S. D. Yun, N. H. Kim, and H. Y. Lee, J. Vac. Sci. Technol. B 27, 1886 (2009).
[CrossRef]

Zhou, Y.

Y. Zhou, M. H. Hong, J. Y. H. Fuh, L. Lu, and B. S. Lukiyanchuk, Phys. Scr. T129, 35 (2007).
[CrossRef]

Zuppella, P.

A. Ritucci, A. Reale, P. Zuppella, L. Reale, P. Tucceri, G. Tomassetti, P. Bettotti, and L. Pavesi, J. Appl. Phys. 102, 034313 (2007).
[CrossRef]

Adv. Funct. Mater. (1)

J. H. Jang, C. K. Ullal, M. Maldovan, T. Gorishnyy, S. Kooi, C. Y. Koh, and E. L. Thomas, Adv. Funct. Mater. 17, 3027(2007).
[CrossRef]

Biomaterials (1)

C. H. Choi, S. H. Hagvall, B. M. Wu, J. C. Y. Dunn, R. E. Beygui, and C. J. Kim, Biomaterials 28, 1672 (2007).
[CrossRef]

J. Alloys Compd. (1)

Q. Xie, M. H. Hong, H. L. Tan, G. X. Chen, L. P. Shi, and T. C. Chong, J. Alloys Compd. 449, 261 (2008).
[CrossRef]

J. Appl. Phys. (1)

A. Ritucci, A. Reale, P. Zuppella, L. Reale, P. Tucceri, G. Tomassetti, P. Bettotti, and L. Pavesi, J. Appl. Phys. 102, 034313 (2007).
[CrossRef]

J. Micromech. Microeng. (1)

S. Kuiper, H. Van Wolferen, C. Van Rijn, W. Nijdam, G. Krijnen, and M. Elwenspoek, J. Micromech. Microeng. 11, 33 (2001).
[CrossRef]

J. Phys. D: Appl. Phys. (1)

H. H. Solak, J. Phys. D: Appl. Phys. 39, R171 (2006).
[CrossRef]

J. Vac. Sci. Technol. B (1)

J. B. Yeo, S. D. Yun, N. H. Kim, and H. Y. Lee, J. Vac. Sci. Technol. B 27, 1886 (2009).
[CrossRef]

Microelectron. Eng. (1)

R. Murillo, H. A. van Wolferen, L. Abelmann, and J. C. Lodder, Microelectron. Eng. 78–79, 260 (2005).
[CrossRef]

Nanotechnology (1)

C. H. Choi and C. J. Kim, Nanotechnology 17, 5326 (2006).
[CrossRef]

Opt. Lett. (2)

Phys. Rev. Lett. (1)

C. H. Choi and C. J. Kim, Phys. Rev. Lett. 96, 066001 (2006).
[CrossRef] [PubMed]

Phys. Scr. (1)

Y. Zhou, M. H. Hong, J. Y. H. Fuh, L. Lu, and B. S. Lukiyanchuk, Phys. Scr. T129, 35 (2007).
[CrossRef]

Physica E (1)

H. I. Smith, Physica E 11, 104 (2001).
[CrossRef]

Proc. IEEE (1)

S. R. J. Brueck, Proc. IEEE 93, 1704 (2005).
[CrossRef]

Other (3)

R. A. Pizarro, M.S. thesis (University of Maryland, 2007).

M. E. Walsh, Ph.D. thesis (MIT, 2004).

I. Wathuthanthri and C. H. Choi, in 2009 ASME International Mechanical Engineering Congress & Exposition (ASME, 2009), paper IMECE2009-10895.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) Side view of the 2-DOF Lloyd–mirror interferometer showing a mirror and a 4 in . substrate. (b) Top view of the interferometer showing the definition of angles x and y. (c) Schematic of interfering beams. In a traditional Lloyd–mirror configuration, a mirror is set perpendicular to a substrate, i.e., x + y = 90 ° , resulting in only 1-DOF. In a 2-DOF configuration, the angles x and y are varied independently.

Fig. 2
Fig. 2

(a) Theoretical maximum pattern coverage as a function of pattern periodicity in the traditional 1-DOF system using l m = 4 in . and λ = 325 nm . (b) Comparison of different mirror sizes. In phase I, the minimum pattern periodicity is λ / 2 , determined by Eq. (4).

Fig. 3
Fig. 3

Theoretical maximum pattern coverage area as function of pattern periodicity for the new 2-DOF configuration of several variations in angles in comparison with the traditional 1-DOF system and experimental results.

Fig. 4
Fig. 4

SEM images of the fabricated PR nanopatterns on 4 in . silicon substrates when pattern periodicity is regulated to be P = 1000 nm . (a) Traditional 1-DOF configuration. (b), (c) 2-DOF configuration of (x,y) =(76°, 60°) and (x,y) = (80°, 70°), respectively. Each scale bar in the SEM images represents 3 μm .

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

V = V ( I ) × V ( OPD ) ,
V ( I ) = 2 I 1 I 2 I 1 + I 2 = 2 cos ( 2 x + y ) · cos y cos ( 2 x + y ) + cos y ,
V ( OPD ) = exp [ ( π σ / c ) 2 ( l OPD ) 2 ] ,
P 1 DOF = λ / ( 2 cos x ) .
L e , 1 DOF = l m / tan x .
L e , 1 DOF = λ l m / 4 P 2 λ 2 .
l OPD , 1 DOF = 2 L e cos x .
L v = ( l OPD / λ ) P ,
P 2 DOF = λ / ( 2 cos x · sin ( x + y ) ) ,
L e , 2 DOF = l m ( cos x / sin ( y + 2 x π / 2 ) ) .
L e , 2 DOF = λ l m sin ( x + y ) 4 P 2 sin 2 ( x + y ) λ 2 λ cos ( x + y ) .
l OPD , 2 DOF = 2 L e cos x · sin ( x + y ) .
l OPD , 2 DOF = ( 1 / π ) ( c / σ ) ln ( V / V ( I ) ) ,

Metrics