Abstract

We demonstrate a sliding-frequency mode-locked (SFM) erbium fiber laser generating 20ps pulses with center wavelengths rapidly sweeping across a spectral range of 50nm. Excess optical nonlinearity in the laser cavity leads to multipulsing, with a tendency to tight pulse bunching (<3ns) at the fundamental cavity frequency of 25MHz. The addition of a parallel optical delay line, with a path difference equal to a rational fraction of the cavity length, distributes the pulses uniformly across the entire cavity and achieves a harmonic SFM up to 1GHz. The result establishes cavity nonlinearity as a critical design parameter for picosecond wavelength-swept lasers.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. H. Yun, Opt. Lett. 30, 2660 (2005).
    [CrossRef] [PubMed]
  2. H. Sabert and E. Brinkmeyer, Electron. Lett. 29, 2122(1993).
    [CrossRef]
  3. C. M. Desterke and M. J. Steel, Opt. Commun. 117, 469(1995).
    [CrossRef]
  4. Y. Kodama and S. Wabnitz, Opt. Lett. 19, 162 (1994).
    [CrossRef] [PubMed]
  5. S. H. Yun, D. J. Richardson, D. O. Culverhouse, and B. Y. Kim, IEEE J. Sel. Top. Quantum Electron. 3, 1087 (1997).
    [CrossRef]
  6. C. Vinegoni, J. Bredfeldt, D. Marks, and S. Boppart, Opt. Express 12, 331 (2004).
    [CrossRef] [PubMed]
  7. J. W. Kang, P. Kim, C. A. Alonzo, H. Park, and S. H. Yun, Opt. Lett. 35, 181 (2010).
    [CrossRef] [PubMed]
  8. J. T. Ahn, H. K. Lee, K. H. Kim, M. Y. Jeon, and E. H. Lee, Opt. Commun. 148, 59 (1998).
    [CrossRef]
  9. F. Li, P. K. A. Wai, and J. N. Kutz, J. Opt. Soc. Am. B 27, 2068(2010).
    [CrossRef]
  10. Z. X. Zhang, L. Zhan, X. X. Yang, S. Y. Luo, and Y. X. Xia, Laser Phys. Lett. 4, 592 (2007).
    [CrossRef]
  11. L. M. Zhao, D. Y. Tang, T. H. Cheng, C. Lu, H. Y. Tam, X. Q. Fu, and S. C. Wen, Opt. Quantum Electron. 40, 1053 (2009).
    [CrossRef]
  12. A. N. Pilipetskii, E. A. Golovchenko, and C. R. Menyuk, Opt. Lett. 20, 907 (1995).
    [CrossRef] [PubMed]
  13. R. Ell, U. Morgner, F. X. Kärtner, J. G. Fujimoto, E. P. Ippen, V. Scheuer, G. Angelow, T. Tschudi, M. J. Lederer, A. Boiko, and B. Luther-Davies, Opt. Lett. 26, 373 (2001).
    [CrossRef]

2010

2009

L. M. Zhao, D. Y. Tang, T. H. Cheng, C. Lu, H. Y. Tam, X. Q. Fu, and S. C. Wen, Opt. Quantum Electron. 40, 1053 (2009).
[CrossRef]

2007

Z. X. Zhang, L. Zhan, X. X. Yang, S. Y. Luo, and Y. X. Xia, Laser Phys. Lett. 4, 592 (2007).
[CrossRef]

2005

2004

2001

1998

J. T. Ahn, H. K. Lee, K. H. Kim, M. Y. Jeon, and E. H. Lee, Opt. Commun. 148, 59 (1998).
[CrossRef]

1997

S. H. Yun, D. J. Richardson, D. O. Culverhouse, and B. Y. Kim, IEEE J. Sel. Top. Quantum Electron. 3, 1087 (1997).
[CrossRef]

1995

1994

1993

H. Sabert and E. Brinkmeyer, Electron. Lett. 29, 2122(1993).
[CrossRef]

Ahn, J. T.

J. T. Ahn, H. K. Lee, K. H. Kim, M. Y. Jeon, and E. H. Lee, Opt. Commun. 148, 59 (1998).
[CrossRef]

Alonzo, C. A.

Angelow, G.

Boiko, A.

Boppart, S.

Bredfeldt, J.

Brinkmeyer, E.

H. Sabert and E. Brinkmeyer, Electron. Lett. 29, 2122(1993).
[CrossRef]

Cheng, T. H.

L. M. Zhao, D. Y. Tang, T. H. Cheng, C. Lu, H. Y. Tam, X. Q. Fu, and S. C. Wen, Opt. Quantum Electron. 40, 1053 (2009).
[CrossRef]

Culverhouse, D. O.

S. H. Yun, D. J. Richardson, D. O. Culverhouse, and B. Y. Kim, IEEE J. Sel. Top. Quantum Electron. 3, 1087 (1997).
[CrossRef]

Desterke, C. M.

C. M. Desterke and M. J. Steel, Opt. Commun. 117, 469(1995).
[CrossRef]

Ell, R.

Fu, X. Q.

L. M. Zhao, D. Y. Tang, T. H. Cheng, C. Lu, H. Y. Tam, X. Q. Fu, and S. C. Wen, Opt. Quantum Electron. 40, 1053 (2009).
[CrossRef]

Fujimoto, J. G.

Golovchenko, E. A.

Ippen, E. P.

Jeon, M. Y.

J. T. Ahn, H. K. Lee, K. H. Kim, M. Y. Jeon, and E. H. Lee, Opt. Commun. 148, 59 (1998).
[CrossRef]

Kang, J. W.

Kärtner, F. X.

Kim, B. Y.

S. H. Yun, D. J. Richardson, D. O. Culverhouse, and B. Y. Kim, IEEE J. Sel. Top. Quantum Electron. 3, 1087 (1997).
[CrossRef]

Kim, K. H.

J. T. Ahn, H. K. Lee, K. H. Kim, M. Y. Jeon, and E. H. Lee, Opt. Commun. 148, 59 (1998).
[CrossRef]

Kim, P.

Kodama, Y.

Kutz, J. N.

Lederer, M. J.

Lee, E. H.

J. T. Ahn, H. K. Lee, K. H. Kim, M. Y. Jeon, and E. H. Lee, Opt. Commun. 148, 59 (1998).
[CrossRef]

Lee, H. K.

J. T. Ahn, H. K. Lee, K. H. Kim, M. Y. Jeon, and E. H. Lee, Opt. Commun. 148, 59 (1998).
[CrossRef]

Li, F.

Lu, C.

L. M. Zhao, D. Y. Tang, T. H. Cheng, C. Lu, H. Y. Tam, X. Q. Fu, and S. C. Wen, Opt. Quantum Electron. 40, 1053 (2009).
[CrossRef]

Luo, S. Y.

Z. X. Zhang, L. Zhan, X. X. Yang, S. Y. Luo, and Y. X. Xia, Laser Phys. Lett. 4, 592 (2007).
[CrossRef]

Luther-Davies, B.

Marks, D.

Menyuk, C. R.

Morgner, U.

Park, H.

Pilipetskii, A. N.

Richardson, D. J.

S. H. Yun, D. J. Richardson, D. O. Culverhouse, and B. Y. Kim, IEEE J. Sel. Top. Quantum Electron. 3, 1087 (1997).
[CrossRef]

Sabert, H.

H. Sabert and E. Brinkmeyer, Electron. Lett. 29, 2122(1993).
[CrossRef]

Scheuer, V.

Steel, M. J.

C. M. Desterke and M. J. Steel, Opt. Commun. 117, 469(1995).
[CrossRef]

Tam, H. Y.

L. M. Zhao, D. Y. Tang, T. H. Cheng, C. Lu, H. Y. Tam, X. Q. Fu, and S. C. Wen, Opt. Quantum Electron. 40, 1053 (2009).
[CrossRef]

Tang, D. Y.

L. M. Zhao, D. Y. Tang, T. H. Cheng, C. Lu, H. Y. Tam, X. Q. Fu, and S. C. Wen, Opt. Quantum Electron. 40, 1053 (2009).
[CrossRef]

Tschudi, T.

Vinegoni, C.

Wabnitz, S.

Wai, P. K. A.

Wen, S. C.

L. M. Zhao, D. Y. Tang, T. H. Cheng, C. Lu, H. Y. Tam, X. Q. Fu, and S. C. Wen, Opt. Quantum Electron. 40, 1053 (2009).
[CrossRef]

Xia, Y. X.

Z. X. Zhang, L. Zhan, X. X. Yang, S. Y. Luo, and Y. X. Xia, Laser Phys. Lett. 4, 592 (2007).
[CrossRef]

Yang, X. X.

Z. X. Zhang, L. Zhan, X. X. Yang, S. Y. Luo, and Y. X. Xia, Laser Phys. Lett. 4, 592 (2007).
[CrossRef]

Yun, S. H.

Zhan, L.

Z. X. Zhang, L. Zhan, X. X. Yang, S. Y. Luo, and Y. X. Xia, Laser Phys. Lett. 4, 592 (2007).
[CrossRef]

Zhang, Z. X.

Z. X. Zhang, L. Zhan, X. X. Yang, S. Y. Luo, and Y. X. Xia, Laser Phys. Lett. 4, 592 (2007).
[CrossRef]

Zhao, L. M.

L. M. Zhao, D. Y. Tang, T. H. Cheng, C. Lu, H. Y. Tam, X. Q. Fu, and S. C. Wen, Opt. Quantum Electron. 40, 1053 (2009).
[CrossRef]

Electron. Lett.

H. Sabert and E. Brinkmeyer, Electron. Lett. 29, 2122(1993).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

S. H. Yun, D. J. Richardson, D. O. Culverhouse, and B. Y. Kim, IEEE J. Sel. Top. Quantum Electron. 3, 1087 (1997).
[CrossRef]

J. Opt. Soc. Am. B

Laser Phys. Lett.

Z. X. Zhang, L. Zhan, X. X. Yang, S. Y. Luo, and Y. X. Xia, Laser Phys. Lett. 4, 592 (2007).
[CrossRef]

Opt. Commun.

C. M. Desterke and M. J. Steel, Opt. Commun. 117, 469(1995).
[CrossRef]

J. T. Ahn, H. K. Lee, K. H. Kim, M. Y. Jeon, and E. H. Lee, Opt. Commun. 148, 59 (1998).
[CrossRef]

Opt. Express

Opt. Lett.

Opt. Quantum Electron.

L. M. Zhao, D. Y. Tang, T. H. Cheng, C. Lu, H. Y. Tam, X. Q. Fu, and S. C. Wen, Opt. Quantum Electron. 40, 1053 (2009).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic of a harmonic SFM fiber laser.

Fig. 2
Fig. 2

(a) Peak-hold spectrum of laser with scanning and stationary filters. (b) Peak intensity of laser emission versus position of galvanometer mirror. (c) Laser emission as measured with a 125 MHz bandwidth photodiode.

Fig. 3
Fig. 3

Comparison of intensity autocorrelation for (a) experiment and (b) simulation. Simulation shows that the extended pedestal is consistent with multiple (e.g., 36) pulses with approximately the same amplitude and pulse width but distributed at random intervals.

Fig. 4
Fig. 4

(a) Pulse train from SFM laser operating at the fortieth harmonic. (b) Corresponding rf spectrum shows 1 GHz pulse repetition rate. (c) Autocorrelation shows a single peak, without the extended pedestal, indicating well-separated pulses.

Metrics