Abstract

A compact temperature sensor based on a fiber loop mirror (FLM) combined with an alcohol-filled high- birefringence photonic crystal fiber (PCF) is proposed and experimentally demonstrated. The output of the FLM is an interference spectrum with many resonant dips, of which the wavelengths are quite sensitive to the change of the refractive index of the filled alcohol for the interference of the FLM. Simulation analysis predicts a high temperature sensitivity, and experimental results show it reaches up to 6.6nm/°C for the 6.1-cm-long PCF used in the FLM.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. B. Mortimore, J. Lightwave Technol. 6, 1217 (1988).
    [CrossRef]
  2. E. De La Rose, L. A. Zenteno, A. N. Starodumov, and D. Monzon, Opt. Lett. 22, 481 (1997).
    [CrossRef]
  3. Y. Liu, B. Liu, X. Feng, W. Zhang, G. Zhou, S. Yuan, G. Kai, and X. Dong, Appl. Opt. 44, 2382 (2005).
    [CrossRef] [PubMed]
  4. O. Frazão, B. V. Marquesa, P. Jorge, J. M. Baptista, and J. L. Santos, Sens. Actuators B 135, 108 (2008).
    [CrossRef]
  5. T. A. Birks, J. C. Knight, and P. St. J. Russell, Opt. Lett. 22, 961 (1997).
    [CrossRef] [PubMed]
  6. A. Ortigosa-Blanch, J. C. Knight, W. J. Wadsworth, J. Arriaga, B. J. Mangan, T. A. Birks, and P. St. J. Russell, Opt. Lett. 25, 1325 (2000).
    [CrossRef]
  7. C.-L. Zhao, X. Yang, C. Lu, W. Jin, and M. S. Demonkan, IEEE Photon. Technol. Lett. 16, 2535 (2004).
    [CrossRef]
  8. X. Dong and H. Tam, Appl. Phys. Lett. 90, 151113 (2007).
    [CrossRef]
  9. H. Y. Fu, H. Y. Tam, L.-Y. Shao, X. Dong, P. K. A. Wai, C. Lu, and S. K. Khijwania, Appl. Opt. 47, 2835 (2008).
    [CrossRef] [PubMed]
  10. W. Qian, C.-L. Zhao, X. Dong, and W. Jin, Opt. Commun. 283, 5250 (2010).
    [CrossRef]
  11. Y. Yu, X. Li, X. Hong, Y. Deng, K. Song, Y. Geng, H. Wei, and W. Tong, Opt. Express 18, 15383 (2010).
    [CrossRef] [PubMed]

2010

2008

H. Y. Fu, H. Y. Tam, L.-Y. Shao, X. Dong, P. K. A. Wai, C. Lu, and S. K. Khijwania, Appl. Opt. 47, 2835 (2008).
[CrossRef] [PubMed]

O. Frazão, B. V. Marquesa, P. Jorge, J. M. Baptista, and J. L. Santos, Sens. Actuators B 135, 108 (2008).
[CrossRef]

2007

X. Dong and H. Tam, Appl. Phys. Lett. 90, 151113 (2007).
[CrossRef]

2005

2004

C.-L. Zhao, X. Yang, C. Lu, W. Jin, and M. S. Demonkan, IEEE Photon. Technol. Lett. 16, 2535 (2004).
[CrossRef]

2000

1997

1988

D. B. Mortimore, J. Lightwave Technol. 6, 1217 (1988).
[CrossRef]

Arriaga, J.

Baptista, J. M.

O. Frazão, B. V. Marquesa, P. Jorge, J. M. Baptista, and J. L. Santos, Sens. Actuators B 135, 108 (2008).
[CrossRef]

Birks, T. A.

De La Rose, E.

Demonkan, M. S.

C.-L. Zhao, X. Yang, C. Lu, W. Jin, and M. S. Demonkan, IEEE Photon. Technol. Lett. 16, 2535 (2004).
[CrossRef]

Deng, Y.

Dong, X.

Feng, X.

Frazão, O.

O. Frazão, B. V. Marquesa, P. Jorge, J. M. Baptista, and J. L. Santos, Sens. Actuators B 135, 108 (2008).
[CrossRef]

Fu, H. Y.

Geng, Y.

Hong, X.

Jin, W.

W. Qian, C.-L. Zhao, X. Dong, and W. Jin, Opt. Commun. 283, 5250 (2010).
[CrossRef]

C.-L. Zhao, X. Yang, C. Lu, W. Jin, and M. S. Demonkan, IEEE Photon. Technol. Lett. 16, 2535 (2004).
[CrossRef]

Jorge, P.

O. Frazão, B. V. Marquesa, P. Jorge, J. M. Baptista, and J. L. Santos, Sens. Actuators B 135, 108 (2008).
[CrossRef]

Kai, G.

Khijwania, S. K.

Knight, J. C.

Li, X.

Liu, B.

Liu, Y.

Lu, C.

H. Y. Fu, H. Y. Tam, L.-Y. Shao, X. Dong, P. K. A. Wai, C. Lu, and S. K. Khijwania, Appl. Opt. 47, 2835 (2008).
[CrossRef] [PubMed]

C.-L. Zhao, X. Yang, C. Lu, W. Jin, and M. S. Demonkan, IEEE Photon. Technol. Lett. 16, 2535 (2004).
[CrossRef]

Mangan, B. J.

Marquesa, B. V.

O. Frazão, B. V. Marquesa, P. Jorge, J. M. Baptista, and J. L. Santos, Sens. Actuators B 135, 108 (2008).
[CrossRef]

Monzon, D.

Mortimore, D. B.

D. B. Mortimore, J. Lightwave Technol. 6, 1217 (1988).
[CrossRef]

Ortigosa-Blanch, A.

Qian, W.

W. Qian, C.-L. Zhao, X. Dong, and W. Jin, Opt. Commun. 283, 5250 (2010).
[CrossRef]

Russell, P. St. J.

Santos, J. L.

O. Frazão, B. V. Marquesa, P. Jorge, J. M. Baptista, and J. L. Santos, Sens. Actuators B 135, 108 (2008).
[CrossRef]

Shao, L.-Y.

Song, K.

Starodumov, A. N.

Tam, H.

X. Dong and H. Tam, Appl. Phys. Lett. 90, 151113 (2007).
[CrossRef]

Tam, H. Y.

Tong, W.

Wadsworth, W. J.

Wai, P. K. A.

Wei, H.

Yang, X.

C.-L. Zhao, X. Yang, C. Lu, W. Jin, and M. S. Demonkan, IEEE Photon. Technol. Lett. 16, 2535 (2004).
[CrossRef]

Yu, Y.

Yuan, S.

Zenteno, L. A.

Zhang, W.

Zhao, C.-L.

W. Qian, C.-L. Zhao, X. Dong, and W. Jin, Opt. Commun. 283, 5250 (2010).
[CrossRef]

C.-L. Zhao, X. Yang, C. Lu, W. Jin, and M. S. Demonkan, IEEE Photon. Technol. Lett. 16, 2535 (2004).
[CrossRef]

Zhou, G.

Appl. Opt.

Appl. Phys. Lett.

X. Dong and H. Tam, Appl. Phys. Lett. 90, 151113 (2007).
[CrossRef]

IEEE Photon. Technol. Lett.

C.-L. Zhao, X. Yang, C. Lu, W. Jin, and M. S. Demonkan, IEEE Photon. Technol. Lett. 16, 2535 (2004).
[CrossRef]

J. Lightwave Technol.

D. B. Mortimore, J. Lightwave Technol. 6, 1217 (1988).
[CrossRef]

Opt. Commun.

W. Qian, C.-L. Zhao, X. Dong, and W. Jin, Opt. Commun. 283, 5250 (2010).
[CrossRef]

Opt. Express

Opt. Lett.

Sens. Actuators B

O. Frazão, B. V. Marquesa, P. Jorge, J. M. Baptista, and J. L. Santos, Sens. Actuators B 135, 108 (2008).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Experimental setup for a temperature sensor based on an FLM. Inset: SEM of the used HiBi-PCF.

Fig. 2
Fig. 2

Temperature dependence of the refractive index of alcohol and the birefringence of the alcohol-filled HiBi-PCF in theory. Insets: x and y polarization mode fields of the alcohol-filled HiBi-PCF at 20 ° C .

Fig. 3
Fig. 3

Transmission spectrum of the alcohol-filled HiBi-PCF FLM at 20 ° C .

Fig. 4
Fig. 4

Transmission spectra of the alcohol-filled HiBi-PCF FLM (a) when the temperature increases from 20 ° C to 34 ° C and (b) when the temperature decreases from 20 ° C to 8 ° C .

Fig. 5
Fig. 5

Relationship between temperature and the resonant wavelength of dip A and dip B.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

f = ( 1 cos θ ) / 2 ,
λ dip = B L / k .
Δ λ dip = ( Δ B L + B Δ L ) / k ,
Δ λ dip = Δ B L / k = L P t k Δ T = λ dip B P t Δ T .

Metrics