Abstract

We introduce a device based on subwavelength resonant grating technology. Using a single lithography step we built a reflective binary grating that mimics the functionality of a blazed diffraction grating in a flat geometry. We have also demonstrated that efficient subwavelength resonant devices for visible wavelengths can be built using silicon.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Magnusson and S. S. Wang, Appl. Phys. Lett. 61, 1022 (1992).
    [CrossRef]
  2. C. Mateus, M. Huang, Y. Deng, A. Neureuther, and C. Chang-Hasnain, IEEE Photon. Technol. Lett. 16, 518 (2004).
    [CrossRef]
  3. S. M. Rytov, Zh. Eksp. Theor. Fiz. 29, 605 (1955).
  4. M. Huang, Y. Zhou, and C. Chang-Hasnain, Nat. Photon. 1, 119 (2007).
    [CrossRef]
  5. D. Fattal, J. Li, Z. Peng, M. Fiorentino, and R. G. Beausoleil, Nat. Photon. 4, 466 (2010).
    [CrossRef]
  6. F. Lu, F. Sedgwick, V. Karagodsky, C. Chase, and C. Chang-Hasnain, Opt. Express 18, 12606 (2010).
    [CrossRef] [PubMed]
  7. P. Lalanne, S. Astilean, P. Chavel, E. Cambril, and H. Launois, J. Opt. Soc. Am. A 16, 1143 (1999).
    [CrossRef]
  8. S. S. Wang, R. Magnusson, J. S. Bagby, and M. G. Moharam, J. Opt. Soc. Am. A 7, 1470 (1990).
    [CrossRef]
  9. L. Li, J. Opt. Soc. Am. A 14, 2758 (1997).
    [CrossRef]

2010 (2)

D. Fattal, J. Li, Z. Peng, M. Fiorentino, and R. G. Beausoleil, Nat. Photon. 4, 466 (2010).
[CrossRef]

F. Lu, F. Sedgwick, V. Karagodsky, C. Chase, and C. Chang-Hasnain, Opt. Express 18, 12606 (2010).
[CrossRef] [PubMed]

2007 (1)

M. Huang, Y. Zhou, and C. Chang-Hasnain, Nat. Photon. 1, 119 (2007).
[CrossRef]

2004 (1)

C. Mateus, M. Huang, Y. Deng, A. Neureuther, and C. Chang-Hasnain, IEEE Photon. Technol. Lett. 16, 518 (2004).
[CrossRef]

1999 (1)

1997 (1)

1992 (1)

R. Magnusson and S. S. Wang, Appl. Phys. Lett. 61, 1022 (1992).
[CrossRef]

1990 (1)

1955 (1)

S. M. Rytov, Zh. Eksp. Theor. Fiz. 29, 605 (1955).

Astilean, S.

Bagby, J. S.

Beausoleil, R. G.

D. Fattal, J. Li, Z. Peng, M. Fiorentino, and R. G. Beausoleil, Nat. Photon. 4, 466 (2010).
[CrossRef]

Cambril, E.

Chang-Hasnain, C.

F. Lu, F. Sedgwick, V. Karagodsky, C. Chase, and C. Chang-Hasnain, Opt. Express 18, 12606 (2010).
[CrossRef] [PubMed]

M. Huang, Y. Zhou, and C. Chang-Hasnain, Nat. Photon. 1, 119 (2007).
[CrossRef]

C. Mateus, M. Huang, Y. Deng, A. Neureuther, and C. Chang-Hasnain, IEEE Photon. Technol. Lett. 16, 518 (2004).
[CrossRef]

Chase, C.

Chavel, P.

Deng, Y.

C. Mateus, M. Huang, Y. Deng, A. Neureuther, and C. Chang-Hasnain, IEEE Photon. Technol. Lett. 16, 518 (2004).
[CrossRef]

Fattal, D.

D. Fattal, J. Li, Z. Peng, M. Fiorentino, and R. G. Beausoleil, Nat. Photon. 4, 466 (2010).
[CrossRef]

Fiorentino, M.

D. Fattal, J. Li, Z. Peng, M. Fiorentino, and R. G. Beausoleil, Nat. Photon. 4, 466 (2010).
[CrossRef]

Huang, M.

M. Huang, Y. Zhou, and C. Chang-Hasnain, Nat. Photon. 1, 119 (2007).
[CrossRef]

C. Mateus, M. Huang, Y. Deng, A. Neureuther, and C. Chang-Hasnain, IEEE Photon. Technol. Lett. 16, 518 (2004).
[CrossRef]

Karagodsky, V.

Lalanne, P.

Launois, H.

Li, J.

D. Fattal, J. Li, Z. Peng, M. Fiorentino, and R. G. Beausoleil, Nat. Photon. 4, 466 (2010).
[CrossRef]

Li, L.

Lu, F.

Magnusson, R.

Mateus, C.

C. Mateus, M. Huang, Y. Deng, A. Neureuther, and C. Chang-Hasnain, IEEE Photon. Technol. Lett. 16, 518 (2004).
[CrossRef]

Moharam, M. G.

Neureuther, A.

C. Mateus, M. Huang, Y. Deng, A. Neureuther, and C. Chang-Hasnain, IEEE Photon. Technol. Lett. 16, 518 (2004).
[CrossRef]

Peng, Z.

D. Fattal, J. Li, Z. Peng, M. Fiorentino, and R. G. Beausoleil, Nat. Photon. 4, 466 (2010).
[CrossRef]

Rytov, S. M.

S. M. Rytov, Zh. Eksp. Theor. Fiz. 29, 605 (1955).

Sedgwick, F.

Wang, S. S.

Zhou, Y.

M. Huang, Y. Zhou, and C. Chang-Hasnain, Nat. Photon. 1, 119 (2007).
[CrossRef]

Appl. Phys. Lett. (1)

R. Magnusson and S. S. Wang, Appl. Phys. Lett. 61, 1022 (1992).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

C. Mateus, M. Huang, Y. Deng, A. Neureuther, and C. Chang-Hasnain, IEEE Photon. Technol. Lett. 16, 518 (2004).
[CrossRef]

J. Opt. Soc. Am. A (3)

Nat. Photon. (2)

M. Huang, Y. Zhou, and C. Chang-Hasnain, Nat. Photon. 1, 119 (2007).
[CrossRef]

D. Fattal, J. Li, Z. Peng, M. Fiorentino, and R. G. Beausoleil, Nat. Photon. 4, 466 (2010).
[CrossRef]

Opt. Express (1)

Zh. Eksp. Theor. Fiz. (1)

S. M. Rytov, Zh. Eksp. Theor. Fiz. 29, 605 (1955).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Plot of the argument (blue) and normalized phase (red) of the reflection coefficient r into the zeroth order (normal to the surface) of a high contrast grating as a function of the period (TM polarization) calculated using RCWA. Below 450 nm the zeroth order is the only allowed order for the subwavelength grating; the onset of the first diffracted order at 450 nm shows up as a sudden drop of reflectivity. The silicon grooves ( n = 3.48 ) are located on quartz substrate ( n = 1.46 ), with a thickness of 170 nm , a duty cycle of 50%. The design wavelength is 650 nm .

Fig. 2
Fig. 2

(a) Top figure shows, in black, the ideal blazed grating phase profile and, in red, the design profile we used. Below the phase profile we have schematic top view and cross section of a binary reflection grating that implements the blazed phase profile. In the bottom, the equivalent 3D grating cross section. (b) Microphotograph of a 150 μm binary reflection grating. (c) SEM picture of the grating grooves showing the modulation in the period.

Fig. 3
Fig. 3

Plot of the reflectivity versus scatter angle for the binary reflection grating at an angle of incidence of 10 ° and various test wavelengths. In the inset, plot of the reflection angle as a function of the test wavelength for the first (blue squares) and second (red triangles) diffraction order. The lines are linear fits to the data.

Tables (1)

Tables Icon

Table 1 Theoretical and Experimental Power Distribution among Diffraction Orders of the Binary Reflection Grating a

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

Φ M ( x , y , λ ) = 2 π sin θ 0 λ x .
Φ 0 ( x , y ) = 2 π sin θ 0 λ 0 x .
Φ B ( x , y , λ 0 ) = 2 π sin θ 0 λ 0 ( x mod Λ ) .

Metrics