Abstract

The vortex coronagraph is one of the most promising coronagraphs for high-contrast imaging because of its simplicity, small inner working angle, high throughput, and clear off-axis discovery space. However, as with most coronagraphs, centrally obscured on-axis telescopes degrade contrast. Based on the remarkable ability of vortex coronagraphs to move light between the interior and exterior of pupils, we propose a method based on multiple vortices, that without sacrificing throughput, reduces the residual light leakage to (a/A)n, with n4, and a and A being the radii of the central obscuration and primary mirror, respectively. This method thus enables high contrasts to be reached even with an on-axis telescope.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Mawet, P. Riaud, J. Surdej, and O. Absil, Astrophys. J. 633, 1191 (2005).
    [CrossRef]
  2. G. Foo, D. Palacios, and G. Swartzlander, Opt. Lett. 30, 3308 (2005).
    [CrossRef]
  3. C. Jenkins, MNRAS 384, 515 (2008).
    [CrossRef]
  4. G. Swartzlander, J. Opt. A 11, 094022 (2009).
    [CrossRef]
  5. D. Mawet, E. Serabyn, K. Liewer, C. Hanot, S. McEldowney, D. Shemo, and N. O’Brien, Opt. Express 17, 1902 (2009).
    [CrossRef] [PubMed]
  6. D. Mawet, J. Trauger, E. Serabyn, D. Moody, K. Liewer, J. Krist, D. Shemo, and N. O’Brien, Proc. SPIE 7440, 74400X (2009).
    [CrossRef]
  7. D. Mawet, E. Serabyn, K. Liewer, R. Burruss, J. Hickey, and D. Shemo, Astrophys. J. 709, 53 (2010).
    [CrossRef]
  8. E. Serabyn, D. Mawet, and R. Burruss, Nature 464, 1018(2010).
    [CrossRef] [PubMed]
  9. The VVC mask applies opposite phase ramps eiϕ and e−iϕ to the orthogonal circular polarization states and also interchanges the polarization states. Thus a second VV mask downstream from the first applies the conjugated phase ramp automatically.
  10. N. Yaitskova, Proc. SPIE 5905, 292 (2005).
  11. L. Abe, M. Venet, K. Enya, H. Kataza, T. Nakagawa, and M. Tamura, Proc. SPIE 7014, 701467 (2008).
    [CrossRef]
  12. P. Baudoz, F. Assemat, R. Galicher, J. Baudrand, and A. Boccaletti, Proc. SPIE 7735, 773581 (2010).
    [CrossRef]

2010 (3)

D. Mawet, E. Serabyn, K. Liewer, R. Burruss, J. Hickey, and D. Shemo, Astrophys. J. 709, 53 (2010).
[CrossRef]

E. Serabyn, D. Mawet, and R. Burruss, Nature 464, 1018(2010).
[CrossRef] [PubMed]

P. Baudoz, F. Assemat, R. Galicher, J. Baudrand, and A. Boccaletti, Proc. SPIE 7735, 773581 (2010).
[CrossRef]

2009 (3)

G. Swartzlander, J. Opt. A 11, 094022 (2009).
[CrossRef]

D. Mawet, J. Trauger, E. Serabyn, D. Moody, K. Liewer, J. Krist, D. Shemo, and N. O’Brien, Proc. SPIE 7440, 74400X (2009).
[CrossRef]

D. Mawet, E. Serabyn, K. Liewer, C. Hanot, S. McEldowney, D. Shemo, and N. O’Brien, Opt. Express 17, 1902 (2009).
[CrossRef] [PubMed]

2008 (2)

L. Abe, M. Venet, K. Enya, H. Kataza, T. Nakagawa, and M. Tamura, Proc. SPIE 7014, 701467 (2008).
[CrossRef]

C. Jenkins, MNRAS 384, 515 (2008).
[CrossRef]

2005 (3)

D. Mawet, P. Riaud, J. Surdej, and O. Absil, Astrophys. J. 633, 1191 (2005).
[CrossRef]

G. Foo, D. Palacios, and G. Swartzlander, Opt. Lett. 30, 3308 (2005).
[CrossRef]

N. Yaitskova, Proc. SPIE 5905, 292 (2005).

Abe, L.

L. Abe, M. Venet, K. Enya, H. Kataza, T. Nakagawa, and M. Tamura, Proc. SPIE 7014, 701467 (2008).
[CrossRef]

Absil, O.

D. Mawet, P. Riaud, J. Surdej, and O. Absil, Astrophys. J. 633, 1191 (2005).
[CrossRef]

Assemat, F.

P. Baudoz, F. Assemat, R. Galicher, J. Baudrand, and A. Boccaletti, Proc. SPIE 7735, 773581 (2010).
[CrossRef]

Baudoz, P.

P. Baudoz, F. Assemat, R. Galicher, J. Baudrand, and A. Boccaletti, Proc. SPIE 7735, 773581 (2010).
[CrossRef]

Baudrand, J.

P. Baudoz, F. Assemat, R. Galicher, J. Baudrand, and A. Boccaletti, Proc. SPIE 7735, 773581 (2010).
[CrossRef]

Boccaletti, A.

P. Baudoz, F. Assemat, R. Galicher, J. Baudrand, and A. Boccaletti, Proc. SPIE 7735, 773581 (2010).
[CrossRef]

Burruss, R.

E. Serabyn, D. Mawet, and R. Burruss, Nature 464, 1018(2010).
[CrossRef] [PubMed]

D. Mawet, E. Serabyn, K. Liewer, R. Burruss, J. Hickey, and D. Shemo, Astrophys. J. 709, 53 (2010).
[CrossRef]

Enya, K.

L. Abe, M. Venet, K. Enya, H. Kataza, T. Nakagawa, and M. Tamura, Proc. SPIE 7014, 701467 (2008).
[CrossRef]

Foo, G.

Galicher, R.

P. Baudoz, F. Assemat, R. Galicher, J. Baudrand, and A. Boccaletti, Proc. SPIE 7735, 773581 (2010).
[CrossRef]

Hanot, C.

Hickey, J.

D. Mawet, E. Serabyn, K. Liewer, R. Burruss, J. Hickey, and D. Shemo, Astrophys. J. 709, 53 (2010).
[CrossRef]

Jenkins, C.

C. Jenkins, MNRAS 384, 515 (2008).
[CrossRef]

Kataza, H.

L. Abe, M. Venet, K. Enya, H. Kataza, T. Nakagawa, and M. Tamura, Proc. SPIE 7014, 701467 (2008).
[CrossRef]

Krist, J.

D. Mawet, J. Trauger, E. Serabyn, D. Moody, K. Liewer, J. Krist, D. Shemo, and N. O’Brien, Proc. SPIE 7440, 74400X (2009).
[CrossRef]

Liewer, K.

D. Mawet, E. Serabyn, K. Liewer, R. Burruss, J. Hickey, and D. Shemo, Astrophys. J. 709, 53 (2010).
[CrossRef]

D. Mawet, E. Serabyn, K. Liewer, C. Hanot, S. McEldowney, D. Shemo, and N. O’Brien, Opt. Express 17, 1902 (2009).
[CrossRef] [PubMed]

D. Mawet, J. Trauger, E. Serabyn, D. Moody, K. Liewer, J. Krist, D. Shemo, and N. O’Brien, Proc. SPIE 7440, 74400X (2009).
[CrossRef]

Mawet, D.

D. Mawet, E. Serabyn, K. Liewer, R. Burruss, J. Hickey, and D. Shemo, Astrophys. J. 709, 53 (2010).
[CrossRef]

E. Serabyn, D. Mawet, and R. Burruss, Nature 464, 1018(2010).
[CrossRef] [PubMed]

D. Mawet, E. Serabyn, K. Liewer, C. Hanot, S. McEldowney, D. Shemo, and N. O’Brien, Opt. Express 17, 1902 (2009).
[CrossRef] [PubMed]

D. Mawet, J. Trauger, E. Serabyn, D. Moody, K. Liewer, J. Krist, D. Shemo, and N. O’Brien, Proc. SPIE 7440, 74400X (2009).
[CrossRef]

D. Mawet, P. Riaud, J. Surdej, and O. Absil, Astrophys. J. 633, 1191 (2005).
[CrossRef]

McEldowney, S.

Moody, D.

D. Mawet, J. Trauger, E. Serabyn, D. Moody, K. Liewer, J. Krist, D. Shemo, and N. O’Brien, Proc. SPIE 7440, 74400X (2009).
[CrossRef]

Nakagawa, T.

L. Abe, M. Venet, K. Enya, H. Kataza, T. Nakagawa, and M. Tamura, Proc. SPIE 7014, 701467 (2008).
[CrossRef]

O’Brien, N.

D. Mawet, E. Serabyn, K. Liewer, C. Hanot, S. McEldowney, D. Shemo, and N. O’Brien, Opt. Express 17, 1902 (2009).
[CrossRef] [PubMed]

D. Mawet, J. Trauger, E. Serabyn, D. Moody, K. Liewer, J. Krist, D. Shemo, and N. O’Brien, Proc. SPIE 7440, 74400X (2009).
[CrossRef]

Palacios, D.

Riaud, P.

D. Mawet, P. Riaud, J. Surdej, and O. Absil, Astrophys. J. 633, 1191 (2005).
[CrossRef]

Serabyn, E.

E. Serabyn, D. Mawet, and R. Burruss, Nature 464, 1018(2010).
[CrossRef] [PubMed]

D. Mawet, E. Serabyn, K. Liewer, R. Burruss, J. Hickey, and D. Shemo, Astrophys. J. 709, 53 (2010).
[CrossRef]

D. Mawet, E. Serabyn, K. Liewer, C. Hanot, S. McEldowney, D. Shemo, and N. O’Brien, Opt. Express 17, 1902 (2009).
[CrossRef] [PubMed]

D. Mawet, J. Trauger, E. Serabyn, D. Moody, K. Liewer, J. Krist, D. Shemo, and N. O’Brien, Proc. SPIE 7440, 74400X (2009).
[CrossRef]

Shemo, D.

D. Mawet, E. Serabyn, K. Liewer, R. Burruss, J. Hickey, and D. Shemo, Astrophys. J. 709, 53 (2010).
[CrossRef]

D. Mawet, E. Serabyn, K. Liewer, C. Hanot, S. McEldowney, D. Shemo, and N. O’Brien, Opt. Express 17, 1902 (2009).
[CrossRef] [PubMed]

D. Mawet, J. Trauger, E. Serabyn, D. Moody, K. Liewer, J. Krist, D. Shemo, and N. O’Brien, Proc. SPIE 7440, 74400X (2009).
[CrossRef]

Surdej, J.

D. Mawet, P. Riaud, J. Surdej, and O. Absil, Astrophys. J. 633, 1191 (2005).
[CrossRef]

Swartzlander, G.

Tamura, M.

L. Abe, M. Venet, K. Enya, H. Kataza, T. Nakagawa, and M. Tamura, Proc. SPIE 7014, 701467 (2008).
[CrossRef]

Trauger, J.

D. Mawet, J. Trauger, E. Serabyn, D. Moody, K. Liewer, J. Krist, D. Shemo, and N. O’Brien, Proc. SPIE 7440, 74400X (2009).
[CrossRef]

Venet, M.

L. Abe, M. Venet, K. Enya, H. Kataza, T. Nakagawa, and M. Tamura, Proc. SPIE 7014, 701467 (2008).
[CrossRef]

Yaitskova, N.

N. Yaitskova, Proc. SPIE 5905, 292 (2005).

Astrophys. J. (2)

D. Mawet, P. Riaud, J. Surdej, and O. Absil, Astrophys. J. 633, 1191 (2005).
[CrossRef]

D. Mawet, E. Serabyn, K. Liewer, R. Burruss, J. Hickey, and D. Shemo, Astrophys. J. 709, 53 (2010).
[CrossRef]

J. Opt. A (1)

G. Swartzlander, J. Opt. A 11, 094022 (2009).
[CrossRef]

MNRAS (1)

C. Jenkins, MNRAS 384, 515 (2008).
[CrossRef]

Nature (1)

E. Serabyn, D. Mawet, and R. Burruss, Nature 464, 1018(2010).
[CrossRef] [PubMed]

Opt. Express (1)

Opt. Lett. (1)

Proc. SPIE (4)

N. Yaitskova, Proc. SPIE 5905, 292 (2005).

L. Abe, M. Venet, K. Enya, H. Kataza, T. Nakagawa, and M. Tamura, Proc. SPIE 7014, 701467 (2008).
[CrossRef]

P. Baudoz, F. Assemat, R. Galicher, J. Baudrand, and A. Boccaletti, Proc. SPIE 7735, 773581 (2010).
[CrossRef]

D. Mawet, J. Trauger, E. Serabyn, D. Moody, K. Liewer, J. Krist, D. Shemo, and N. O’Brien, Proc. SPIE 7440, 74400X (2009).
[CrossRef]

Other (1)

The VVC mask applies opposite phase ramps eiϕ and e−iϕ to the orthogonal circular polarization states and also interchanges the polarization states. Thus a second VV mask downstream from the first applies the conjugated phase ramp automatically.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1
Fig. 1

Illustration of the diffraction effect of the vortex phase mask on a filled aperture (left). All of the on-axis coherent light appears outside of the geometric image of the input pupil (right). A circular aperture (Lyot stop) then blocks it all. FT, Fourier transform.

Fig. 2
Fig. 2

Layout of the two-stage VC. A. Obscured entrance pupil decomposed into the difference of two filled apertures with radii A and a < A . B. Application of the VC phase ramp e i ϕ to the image produced by the imaging lens L1. C . The pupil plane distribution after pupil imaging lens L2. The crosscuts show the linear decomposition of the field into the sum of a positive term ( A / r ) 2 for the filled pupil of radius A, and another negative term ( a / r ) 2 corresponding to the filled pupil of radius a < A . C. First Lyot stop L S out . C + . Post-Lyot stop field. The crosscuts show the decomposition of the residual field as the sum of the negative pupil term ( a / r ) 2 , and a second term that leads to cancellation beyond A. D. Image in the second focal plane after L3; note that the broad distribution now arises predominantly from the effect of a. Also shown is the conjugated vortex VC * , with a phase ramp e i ϕ . E . Pupil plane field after the second vortex, decomposed into the sum of an outer pupil of radius A with a reduced amplitude ( a / A ) 2 , and the inner pupil of radius a of amplitude 1 . E. Application of the second, inner Lyot stop ( L S in ). E + . The final exit pupil after the second stage is a replica of the original entrance pupil left with an intensity reduced by the factor ( a / A ) 4 .

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

E Lyot ( r , ψ ) = { 0 r < A e i 2 ψ ( A r ) 2 r > A .
E pup ( r , ψ ) = { 0 r < a 1 a < r < A 0 r > A .
E pup ( r , ψ ) = { 1 r < a 0 r > a } + { 1 r < A 0 r > A } .
E pup 1 ( r , ψ ) = { 0 r < a e i 2 ψ ( a r ) 2 a < r < A e i 2 ψ [ ( A r ) 2 ( a r ) 2 ] r > A .
E Lyot 1 ( r , ψ ) = { 0 r < a e i 2 ψ ( a r ) 2 a < r < A 0 r > A .
E Lyot 1 ( r , ψ ) = { 0 r < a e i 2 ψ ( a r ) 2 a < r < A e i 2 ψ ( a A ) 2 ( A r ) 2 e i 2 ψ ( a r ) 2 r > A .
E f p 2 ( ρ , θ ) = e i 2 θ 2 J 1 ( k ρ a ) k ρ a + e i 2 θ 2 J 1 ( k ρ A ) k ρ A ( a A ) 2 .
E f p 2 ( ρ , θ ) = 2 J 1 ( k ρ a ) k ρ a + 2 J 1 ( k ρ A ) k ρ A ( a A ) 2 .
E pup 2 ( r , ψ ) = { 1 r < a 0 r > a } + { ( a A ) 2 r < A 0 r > A } .
E Lyot 2 ( r , ψ ) = { 0 r < a ( a A ) 2 a < r < A 0 r > A .

Metrics