Abstract

A novel (to our knowledge) scheme of an optical router/switch element, composed of a tapered side-coupled integrated spaced sequence of optical resonators, is proposed. It is based on a modified design of the ring sequence in which the resonance conditions are set by the single ring resonance and by the coherent feedback of the sequence of rings. This double condition yields robustness against fabrication defects, dense routing capability, and high switching efficiency.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Shacham, K. Bergman, and L. P. Carloni, IEEE Trans. Comput. 57, 1246 (2008).
    [CrossRef]
  2. B. G. Lee, A. Biberman, J. Chan, and K. Bergman, IEEE J. Sel. Top. Quantum Electron. 16, 6 (2010).
    [CrossRef]
  3. S. J. B. Yoo, Electron. Lett. 45, 584 (2009).
    [CrossRef]
  4. L. Stampoulidis, D. Apostolopoulos, D. Petrantonakis, P. Zakynthinos, P. Bakopoulos, O. Zouraraki, E. Kehayas, A. Poustie, G. Maxwell, and H. Avramopoulos, IEEE J. Sel. Top. Quantum Electron. 14, 849 (2008).
    [CrossRef]
  5. Z. Yang and J. E. Sipe, Opt. Lett. 32, 918 (2007).
    [CrossRef] [PubMed]
  6. J. E. Heebner, P. Chak, S. Pereira, J. E. Sipe, and R. W. Boyd, J. Opt. Soc. Am. B 21, 1818 (2004).
    [CrossRef]
  7. Q. Xu, S. Sandhu, M. L. Povinelli, J. Shakya, S. Fan, and M. Lipson, Phys. Rev. Lett. 96, 123901 (2006).
    [CrossRef] [PubMed]
  8. M. Mancinelli, R. Guider, M. Masi, P. Bettotti, M. R. Vanacharla, L. Pavesi, and J.-M. Fedeli, “Optical characterization of a SCISSOR device,” submitted to Opt. Express.
  9. The exact LC value used in the simulations is LC=3/2πR+(Rk−R)+(RK+1−R), where R is the radius of the central ring (e.g., ring no. 6 in Fig. ), while Rk and Rk+1 are the radii of the two neighboring rings. This small correction to LC is empirically used to reduce the through signal near the stop band edges.
  10. M. Mancinelli, R. Guider, P. Bettotti, M. Masi, M. R. Vanacharla, and L. Pavesi, “Coupled-resonator-induced-transparency concept for wavelength routing applications,” submitted to Opt. Express.
  11. B. E. Little, J.-P. Laine, and S. T. Chu, Opt. Lett. 22, 4 (1997).
    [CrossRef] [PubMed]
  12. Q. F. Xu, B. Schmidt, S. Pradhan, and M. Lipson, Nature 435, 325 (2005).
    [CrossRef] [PubMed]

2010 (1)

B. G. Lee, A. Biberman, J. Chan, and K. Bergman, IEEE J. Sel. Top. Quantum Electron. 16, 6 (2010).
[CrossRef]

2009 (1)

S. J. B. Yoo, Electron. Lett. 45, 584 (2009).
[CrossRef]

2008 (2)

L. Stampoulidis, D. Apostolopoulos, D. Petrantonakis, P. Zakynthinos, P. Bakopoulos, O. Zouraraki, E. Kehayas, A. Poustie, G. Maxwell, and H. Avramopoulos, IEEE J. Sel. Top. Quantum Electron. 14, 849 (2008).
[CrossRef]

A. Shacham, K. Bergman, and L. P. Carloni, IEEE Trans. Comput. 57, 1246 (2008).
[CrossRef]

2007 (1)

2006 (1)

Q. Xu, S. Sandhu, M. L. Povinelli, J. Shakya, S. Fan, and M. Lipson, Phys. Rev. Lett. 96, 123901 (2006).
[CrossRef] [PubMed]

2005 (1)

Q. F. Xu, B. Schmidt, S. Pradhan, and M. Lipson, Nature 435, 325 (2005).
[CrossRef] [PubMed]

2004 (1)

1997 (1)

Apostolopoulos, D.

L. Stampoulidis, D. Apostolopoulos, D. Petrantonakis, P. Zakynthinos, P. Bakopoulos, O. Zouraraki, E. Kehayas, A. Poustie, G. Maxwell, and H. Avramopoulos, IEEE J. Sel. Top. Quantum Electron. 14, 849 (2008).
[CrossRef]

Avramopoulos, H.

L. Stampoulidis, D. Apostolopoulos, D. Petrantonakis, P. Zakynthinos, P. Bakopoulos, O. Zouraraki, E. Kehayas, A. Poustie, G. Maxwell, and H. Avramopoulos, IEEE J. Sel. Top. Quantum Electron. 14, 849 (2008).
[CrossRef]

Bakopoulos, P.

L. Stampoulidis, D. Apostolopoulos, D. Petrantonakis, P. Zakynthinos, P. Bakopoulos, O. Zouraraki, E. Kehayas, A. Poustie, G. Maxwell, and H. Avramopoulos, IEEE J. Sel. Top. Quantum Electron. 14, 849 (2008).
[CrossRef]

Bergman, K.

B. G. Lee, A. Biberman, J. Chan, and K. Bergman, IEEE J. Sel. Top. Quantum Electron. 16, 6 (2010).
[CrossRef]

A. Shacham, K. Bergman, and L. P. Carloni, IEEE Trans. Comput. 57, 1246 (2008).
[CrossRef]

Bettotti, P.

M. Mancinelli, R. Guider, M. Masi, P. Bettotti, M. R. Vanacharla, L. Pavesi, and J.-M. Fedeli, “Optical characterization of a SCISSOR device,” submitted to Opt. Express.

M. Mancinelli, R. Guider, P. Bettotti, M. Masi, M. R. Vanacharla, and L. Pavesi, “Coupled-resonator-induced-transparency concept for wavelength routing applications,” submitted to Opt. Express.

Biberman, A.

B. G. Lee, A. Biberman, J. Chan, and K. Bergman, IEEE J. Sel. Top. Quantum Electron. 16, 6 (2010).
[CrossRef]

Boyd, R. W.

Carloni, L. P.

A. Shacham, K. Bergman, and L. P. Carloni, IEEE Trans. Comput. 57, 1246 (2008).
[CrossRef]

Chak, P.

Chan, J.

B. G. Lee, A. Biberman, J. Chan, and K. Bergman, IEEE J. Sel. Top. Quantum Electron. 16, 6 (2010).
[CrossRef]

Chu, S. T.

Fan, S.

Q. Xu, S. Sandhu, M. L. Povinelli, J. Shakya, S. Fan, and M. Lipson, Phys. Rev. Lett. 96, 123901 (2006).
[CrossRef] [PubMed]

Fedeli, J.-M.

M. Mancinelli, R. Guider, M. Masi, P. Bettotti, M. R. Vanacharla, L. Pavesi, and J.-M. Fedeli, “Optical characterization of a SCISSOR device,” submitted to Opt. Express.

Guider, R.

M. Mancinelli, R. Guider, P. Bettotti, M. Masi, M. R. Vanacharla, and L. Pavesi, “Coupled-resonator-induced-transparency concept for wavelength routing applications,” submitted to Opt. Express.

M. Mancinelli, R. Guider, M. Masi, P. Bettotti, M. R. Vanacharla, L. Pavesi, and J.-M. Fedeli, “Optical characterization of a SCISSOR device,” submitted to Opt. Express.

Heebner, J. E.

Kehayas, E.

L. Stampoulidis, D. Apostolopoulos, D. Petrantonakis, P. Zakynthinos, P. Bakopoulos, O. Zouraraki, E. Kehayas, A. Poustie, G. Maxwell, and H. Avramopoulos, IEEE J. Sel. Top. Quantum Electron. 14, 849 (2008).
[CrossRef]

Laine, J.-P.

Lee, B. G.

B. G. Lee, A. Biberman, J. Chan, and K. Bergman, IEEE J. Sel. Top. Quantum Electron. 16, 6 (2010).
[CrossRef]

Lipson, M.

Q. Xu, S. Sandhu, M. L. Povinelli, J. Shakya, S. Fan, and M. Lipson, Phys. Rev. Lett. 96, 123901 (2006).
[CrossRef] [PubMed]

Q. F. Xu, B. Schmidt, S. Pradhan, and M. Lipson, Nature 435, 325 (2005).
[CrossRef] [PubMed]

Little, B. E.

Mancinelli, M.

M. Mancinelli, R. Guider, M. Masi, P. Bettotti, M. R. Vanacharla, L. Pavesi, and J.-M. Fedeli, “Optical characterization of a SCISSOR device,” submitted to Opt. Express.

M. Mancinelli, R. Guider, P. Bettotti, M. Masi, M. R. Vanacharla, and L. Pavesi, “Coupled-resonator-induced-transparency concept for wavelength routing applications,” submitted to Opt. Express.

Masi, M.

M. Mancinelli, R. Guider, P. Bettotti, M. Masi, M. R. Vanacharla, and L. Pavesi, “Coupled-resonator-induced-transparency concept for wavelength routing applications,” submitted to Opt. Express.

M. Mancinelli, R. Guider, M. Masi, P. Bettotti, M. R. Vanacharla, L. Pavesi, and J.-M. Fedeli, “Optical characterization of a SCISSOR device,” submitted to Opt. Express.

Maxwell, G.

L. Stampoulidis, D. Apostolopoulos, D. Petrantonakis, P. Zakynthinos, P. Bakopoulos, O. Zouraraki, E. Kehayas, A. Poustie, G. Maxwell, and H. Avramopoulos, IEEE J. Sel. Top. Quantum Electron. 14, 849 (2008).
[CrossRef]

Pavesi, L.

M. Mancinelli, R. Guider, M. Masi, P. Bettotti, M. R. Vanacharla, L. Pavesi, and J.-M. Fedeli, “Optical characterization of a SCISSOR device,” submitted to Opt. Express.

M. Mancinelli, R. Guider, P. Bettotti, M. Masi, M. R. Vanacharla, and L. Pavesi, “Coupled-resonator-induced-transparency concept for wavelength routing applications,” submitted to Opt. Express.

Pereira, S.

Petrantonakis, D.

L. Stampoulidis, D. Apostolopoulos, D. Petrantonakis, P. Zakynthinos, P. Bakopoulos, O. Zouraraki, E. Kehayas, A. Poustie, G. Maxwell, and H. Avramopoulos, IEEE J. Sel. Top. Quantum Electron. 14, 849 (2008).
[CrossRef]

Poustie, A.

L. Stampoulidis, D. Apostolopoulos, D. Petrantonakis, P. Zakynthinos, P. Bakopoulos, O. Zouraraki, E. Kehayas, A. Poustie, G. Maxwell, and H. Avramopoulos, IEEE J. Sel. Top. Quantum Electron. 14, 849 (2008).
[CrossRef]

Povinelli, M. L.

Q. Xu, S. Sandhu, M. L. Povinelli, J. Shakya, S. Fan, and M. Lipson, Phys. Rev. Lett. 96, 123901 (2006).
[CrossRef] [PubMed]

Pradhan, S.

Q. F. Xu, B. Schmidt, S. Pradhan, and M. Lipson, Nature 435, 325 (2005).
[CrossRef] [PubMed]

Sandhu, S.

Q. Xu, S. Sandhu, M. L. Povinelli, J. Shakya, S. Fan, and M. Lipson, Phys. Rev. Lett. 96, 123901 (2006).
[CrossRef] [PubMed]

Schmidt, B.

Q. F. Xu, B. Schmidt, S. Pradhan, and M. Lipson, Nature 435, 325 (2005).
[CrossRef] [PubMed]

Shacham, A.

A. Shacham, K. Bergman, and L. P. Carloni, IEEE Trans. Comput. 57, 1246 (2008).
[CrossRef]

Shakya, J.

Q. Xu, S. Sandhu, M. L. Povinelli, J. Shakya, S. Fan, and M. Lipson, Phys. Rev. Lett. 96, 123901 (2006).
[CrossRef] [PubMed]

Sipe, J. E.

Stampoulidis, L.

L. Stampoulidis, D. Apostolopoulos, D. Petrantonakis, P. Zakynthinos, P. Bakopoulos, O. Zouraraki, E. Kehayas, A. Poustie, G. Maxwell, and H. Avramopoulos, IEEE J. Sel. Top. Quantum Electron. 14, 849 (2008).
[CrossRef]

Vanacharla, M. R.

M. Mancinelli, R. Guider, P. Bettotti, M. Masi, M. R. Vanacharla, and L. Pavesi, “Coupled-resonator-induced-transparency concept for wavelength routing applications,” submitted to Opt. Express.

M. Mancinelli, R. Guider, M. Masi, P. Bettotti, M. R. Vanacharla, L. Pavesi, and J.-M. Fedeli, “Optical characterization of a SCISSOR device,” submitted to Opt. Express.

Xu, Q.

Q. Xu, S. Sandhu, M. L. Povinelli, J. Shakya, S. Fan, and M. Lipson, Phys. Rev. Lett. 96, 123901 (2006).
[CrossRef] [PubMed]

Xu, Q. F.

Q. F. Xu, B. Schmidt, S. Pradhan, and M. Lipson, Nature 435, 325 (2005).
[CrossRef] [PubMed]

Yang, Z.

Yoo, S. J. B.

S. J. B. Yoo, Electron. Lett. 45, 584 (2009).
[CrossRef]

Zakynthinos, P.

L. Stampoulidis, D. Apostolopoulos, D. Petrantonakis, P. Zakynthinos, P. Bakopoulos, O. Zouraraki, E. Kehayas, A. Poustie, G. Maxwell, and H. Avramopoulos, IEEE J. Sel. Top. Quantum Electron. 14, 849 (2008).
[CrossRef]

Zouraraki, O.

L. Stampoulidis, D. Apostolopoulos, D. Petrantonakis, P. Zakynthinos, P. Bakopoulos, O. Zouraraki, E. Kehayas, A. Poustie, G. Maxwell, and H. Avramopoulos, IEEE J. Sel. Top. Quantum Electron. 14, 849 (2008).
[CrossRef]

Electron. Lett. (1)

S. J. B. Yoo, Electron. Lett. 45, 584 (2009).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (2)

L. Stampoulidis, D. Apostolopoulos, D. Petrantonakis, P. Zakynthinos, P. Bakopoulos, O. Zouraraki, E. Kehayas, A. Poustie, G. Maxwell, and H. Avramopoulos, IEEE J. Sel. Top. Quantum Electron. 14, 849 (2008).
[CrossRef]

B. G. Lee, A. Biberman, J. Chan, and K. Bergman, IEEE J. Sel. Top. Quantum Electron. 16, 6 (2010).
[CrossRef]

IEEE Trans. Comput. (1)

A. Shacham, K. Bergman, and L. P. Carloni, IEEE Trans. Comput. 57, 1246 (2008).
[CrossRef]

J. Opt. Soc. Am. B (1)

Nature (1)

Q. F. Xu, B. Schmidt, S. Pradhan, and M. Lipson, Nature 435, 325 (2005).
[CrossRef] [PubMed]

Opt. Lett. (2)

Phys. Rev. Lett. (1)

Q. Xu, S. Sandhu, M. L. Povinelli, J. Shakya, S. Fan, and M. Lipson, Phys. Rev. Lett. 96, 123901 (2006).
[CrossRef] [PubMed]

Other (3)

M. Mancinelli, R. Guider, M. Masi, P. Bettotti, M. R. Vanacharla, L. Pavesi, and J.-M. Fedeli, “Optical characterization of a SCISSOR device,” submitted to Opt. Express.

The exact LC value used in the simulations is LC=3/2πR+(Rk−R)+(RK+1−R), where R is the radius of the central ring (e.g., ring no. 6 in Fig. ), while Rk and Rk+1 are the radii of the two neighboring rings. This small correction to LC is empirically used to reduce the through signal near the stop band edges.

M. Mancinelli, R. Guider, P. Bettotti, M. Masi, M. R. Vanacharla, and L. Pavesi, “Coupled-resonator-induced-transparency concept for wavelength routing applications,” submitted to Opt. Express.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

(top) Through-port signal of the TS whose structure is shown in the bottom panel. Three different TSs were simulated for different ring pairings: dashed black curve pairing of rings 6 and 7, continuous blue curve pairing of rings 5 and 6, dotted red curve pairing of rings 4 and 5. (bottom) Simplified sketch of the TS. The red circled rings show the pairing that induces the resonance for CH-1. Numbers on the top label the pairs responsible for each channel, while rings are numbered on their centers. Arrows refer to the center-to-center distance; R is defined in the text.

Fig. 2
Fig. 2

Error occurrence probability versus power coupling coefficient for various channels simulated for (a)  σ = 1 nm or (b)  σ = 2 nm . The labels refer to the various channels. (c) Q factor versus the power coupling coefficient for different channels and σ values. The points are the averaged values, while the bars refer to the standard deviations over 500 realizations of TS. Only values for CH0, CH-1, and CH-2 are reported, since results for CH 1 = CH 0 , CH 2 = CH - 1 , and CH 3 = CH - 2 .

Fig. 3
Fig. 3

Performances of the device switching capability. Extinction ratio of the various channels versus the effective index variations of a ring pair, | Δ n | . The inset shows the through spectra in the CH0 region for | Δ n | varied from 0 to 4 × 10 4 : the intensity of the CRIT peak steadily decreases with the increase of | Δ n | . Dashed lines sketch the channel widths.

Metrics