Abstract

An all-fiber approach to generate triangular-shaped pulses based on frequency-to-time conversion is proposed and demonstrated. Two filter modules that have sinusoidal spectral responses are cascaded to create a triangular-shaped optical spectrum. Through the frequency-to-time conversion in a dispersive fiber, periodic triangular pulses with the same shape as the optical spectrum are obtained. The repetition rate and pulse width of the generated signals can be tuned by adjusting the modulation rate and the dispersion value, respectively.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Capmany and D. Novak, Nat. Photon. 1, 319 (2007).
    [CrossRef]
  2. A. J. Seeds and K. J. Williams, J. Lightwave Technol. 24, 4628 (2006).
    [CrossRef]
  3. M. H. Khan, H. Shen, Y. Xuan, L. Zhao, S. Xiao, D. E. Leaird, A. M. Weiner, and M. Qi, Nat. Photon. 4, 117 (2010).
    [CrossRef]
  4. J. P. Yao, J. Lightwave Technol. 27, 314 (2009).
    [CrossRef]
  5. J. Chou, Y. Han, and B. Jalali, IEEE Photon. Technol. Lett. 15, 581 (2003).
    [CrossRef]
  6. V. Torres-Company, J. Lancis, P. Andres, and L. R. Chen, J. Lightwave Technol. 26, 2476 (2008).
    [CrossRef]
  7. C. Wang and J. Yao, IEEE Trans. Microwave Theory Tech. 56, 542 (2008).
    [CrossRef]
  8. M. Muriel, J. Azaæa, and A. Carballar, Opt. Lett. 24, 1(1999).
    [CrossRef]
  9. A. W. Lohmann and D. Mendilovic, Appl. Opt. 31, 6212(1992).
    [CrossRef] [PubMed]
  10. S. Kumar and D. Yang, Opt. Lett. 33, 2002 (2008).
    [CrossRef] [PubMed]
  11. J. D. McKinney, D. Seo, D. E. Leaird, and A. M. Weiner, J. Lightwave Technol. 21, 3020 (2003).
    [CrossRef]
  12. H. Wang, A. I. Latkin, S. Boscolo, P. Harper, and S. K. Turitsyn, J. Opt. 12, 035205 (2010).
    [CrossRef]
  13. J. Ye, L.-S. Yan, W. Pan, B. Luo, X.-H. Zou, A.-L. Yi, and X. S. Yao, Opt. Lett. 35, 2606 (2010).
    [CrossRef] [PubMed]

2010

M. H. Khan, H. Shen, Y. Xuan, L. Zhao, S. Xiao, D. E. Leaird, A. M. Weiner, and M. Qi, Nat. Photon. 4, 117 (2010).
[CrossRef]

H. Wang, A. I. Latkin, S. Boscolo, P. Harper, and S. K. Turitsyn, J. Opt. 12, 035205 (2010).
[CrossRef]

J. Ye, L.-S. Yan, W. Pan, B. Luo, X.-H. Zou, A.-L. Yi, and X. S. Yao, Opt. Lett. 35, 2606 (2010).
[CrossRef] [PubMed]

2009

2008

2007

J. Capmany and D. Novak, Nat. Photon. 1, 319 (2007).
[CrossRef]

2006

2003

J. D. McKinney, D. Seo, D. E. Leaird, and A. M. Weiner, J. Lightwave Technol. 21, 3020 (2003).
[CrossRef]

J. Chou, Y. Han, and B. Jalali, IEEE Photon. Technol. Lett. 15, 581 (2003).
[CrossRef]

1999

1992

Andres, P.

Azaæa, J.

Boscolo, S.

H. Wang, A. I. Latkin, S. Boscolo, P. Harper, and S. K. Turitsyn, J. Opt. 12, 035205 (2010).
[CrossRef]

Capmany, J.

J. Capmany and D. Novak, Nat. Photon. 1, 319 (2007).
[CrossRef]

Carballar, A.

Chen, L. R.

Chou, J.

J. Chou, Y. Han, and B. Jalali, IEEE Photon. Technol. Lett. 15, 581 (2003).
[CrossRef]

Han, Y.

J. Chou, Y. Han, and B. Jalali, IEEE Photon. Technol. Lett. 15, 581 (2003).
[CrossRef]

Harper, P.

H. Wang, A. I. Latkin, S. Boscolo, P. Harper, and S. K. Turitsyn, J. Opt. 12, 035205 (2010).
[CrossRef]

Jalali, B.

J. Chou, Y. Han, and B. Jalali, IEEE Photon. Technol. Lett. 15, 581 (2003).
[CrossRef]

Khan, M. H.

M. H. Khan, H. Shen, Y. Xuan, L. Zhao, S. Xiao, D. E. Leaird, A. M. Weiner, and M. Qi, Nat. Photon. 4, 117 (2010).
[CrossRef]

Kumar, S.

Lancis, J.

Latkin, A. I.

H. Wang, A. I. Latkin, S. Boscolo, P. Harper, and S. K. Turitsyn, J. Opt. 12, 035205 (2010).
[CrossRef]

Leaird, D. E.

M. H. Khan, H. Shen, Y. Xuan, L. Zhao, S. Xiao, D. E. Leaird, A. M. Weiner, and M. Qi, Nat. Photon. 4, 117 (2010).
[CrossRef]

J. D. McKinney, D. Seo, D. E. Leaird, and A. M. Weiner, J. Lightwave Technol. 21, 3020 (2003).
[CrossRef]

Lohmann, A. W.

Luo, B.

McKinney, J. D.

Mendilovic, D.

Muriel, M.

Novak, D.

J. Capmany and D. Novak, Nat. Photon. 1, 319 (2007).
[CrossRef]

Pan, W.

Qi, M.

M. H. Khan, H. Shen, Y. Xuan, L. Zhao, S. Xiao, D. E. Leaird, A. M. Weiner, and M. Qi, Nat. Photon. 4, 117 (2010).
[CrossRef]

Seeds, A. J.

Seo, D.

Shen, H.

M. H. Khan, H. Shen, Y. Xuan, L. Zhao, S. Xiao, D. E. Leaird, A. M. Weiner, and M. Qi, Nat. Photon. 4, 117 (2010).
[CrossRef]

Torres-Company, V.

Turitsyn, S. K.

H. Wang, A. I. Latkin, S. Boscolo, P. Harper, and S. K. Turitsyn, J. Opt. 12, 035205 (2010).
[CrossRef]

Wang, C.

C. Wang and J. Yao, IEEE Trans. Microwave Theory Tech. 56, 542 (2008).
[CrossRef]

Wang, H.

H. Wang, A. I. Latkin, S. Boscolo, P. Harper, and S. K. Turitsyn, J. Opt. 12, 035205 (2010).
[CrossRef]

Weiner, A. M.

M. H. Khan, H. Shen, Y. Xuan, L. Zhao, S. Xiao, D. E. Leaird, A. M. Weiner, and M. Qi, Nat. Photon. 4, 117 (2010).
[CrossRef]

J. D. McKinney, D. Seo, D. E. Leaird, and A. M. Weiner, J. Lightwave Technol. 21, 3020 (2003).
[CrossRef]

Williams, K. J.

Xiao, S.

M. H. Khan, H. Shen, Y. Xuan, L. Zhao, S. Xiao, D. E. Leaird, A. M. Weiner, and M. Qi, Nat. Photon. 4, 117 (2010).
[CrossRef]

Xuan, Y.

M. H. Khan, H. Shen, Y. Xuan, L. Zhao, S. Xiao, D. E. Leaird, A. M. Weiner, and M. Qi, Nat. Photon. 4, 117 (2010).
[CrossRef]

Yan, L.-S.

Yang, D.

Yao, J.

C. Wang and J. Yao, IEEE Trans. Microwave Theory Tech. 56, 542 (2008).
[CrossRef]

Yao, J. P.

Yao, X. S.

Ye, J.

Yi, A.-L.

Zhao, L.

M. H. Khan, H. Shen, Y. Xuan, L. Zhao, S. Xiao, D. E. Leaird, A. M. Weiner, and M. Qi, Nat. Photon. 4, 117 (2010).
[CrossRef]

Zou, X.-H.

Appl. Opt.

IEEE Photon. Technol. Lett.

J. Chou, Y. Han, and B. Jalali, IEEE Photon. Technol. Lett. 15, 581 (2003).
[CrossRef]

IEEE Trans. Microwave Theory Tech.

C. Wang and J. Yao, IEEE Trans. Microwave Theory Tech. 56, 542 (2008).
[CrossRef]

J. Lightwave Technol.

J. Opt.

H. Wang, A. I. Latkin, S. Boscolo, P. Harper, and S. K. Turitsyn, J. Opt. 12, 035205 (2010).
[CrossRef]

Nat. Photon.

J. Capmany and D. Novak, Nat. Photon. 1, 319 (2007).
[CrossRef]

M. H. Khan, H. Shen, Y. Xuan, L. Zhao, S. Xiao, D. E. Leaird, A. M. Weiner, and M. Qi, Nat. Photon. 4, 117 (2010).
[CrossRef]

Opt. Lett.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Conceptual diagrams (a) of the triangular-shaped pulse generation system and (b) of the spectrum shaper. MLL, mode-locked laser; PMF, polarization maintaining fiber; DE, dispersive element; PD, photodetector; BTOF, bandwidth-tunable optical filter; PC, polarization controller.

Fig. 2
Fig. 2

Emulational response function of the proposed spectrum shaper (solid curve) and a standard triangular filter (dashed curve).

Fig. 3
Fig. 3

(a) Optical spectrum after the spectrum shaper and (b) the corresponding temporal triangular-shaped pulses when the dispersive fiber length is 10 km .

Fig. 4
Fig. 4

(a) Generated temporal pulses with modulated rates and dispersive fiber lengths of (a)  2.5 G bits / s , 10 km ; (b) 5 G bits / s , 10 km ; (c)  2.5 G bits / s , 4 km .

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

f ( ω ) = A 1 [ 1 + a 1 cos ( ω T 1 ) ] ,
f ( ω ) = A [ 1 + a 1 cos ( ω T 1 ) ] [ 1 + a 2 cos ( ω T 2 ) ] = A { 1 + a 1 cos ( ω T 1 ) + a 2 cos ( ω T 2 ) + a 1 a 2 2 [ cos ( ω T 1 + ω T 2 ) + cos ( ω T 1 ω T 2 ) ] } .
f ( ω ) = A a 1 [ 1 a 1 + cos ( ω T 1 ) + 1 9 cos ( 3 ω T 1 ) ] .
f ( t ) = B 1 + B 2 ( cos ω t + 1 9 cos 3 ω t + 1 25 cos 5 ω t + ) ,

Metrics