Abstract

Computational studies are used to show that the crystalline structure of Si causes the waveguide Kerr effective nonlinearity, γ, to vary by 10% for in-plane variation of the orientation of a silicon nanowire waveguide (SiNWG) fabricated on a standard silicon-on-insulator wafer. Our analysis shows that this angular dependence of γ can be employed to form a nonlinear Kerr grating in dimensionally uniform SiNWGs based on either ring resonators or cascaded waveguide bends. The magnitude of the nonlinear index variation in these gratings is found to be sufficient for phase matching in four-wave mixing and other optical parametric processes.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (3)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (3)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription