Abstract

We demonstrate the fabrication by direct laser writing and the operation of a directional coupler containing Bragg gratings in each waveguide. We achieve high-precision control over the longitudinal shift between the gratings, which feature first-order Bragg resonance at telecommunication wavelengths. We observe fundamental differences between light transmission characteristics in couplers with unshifted and shifted gratings in agreement with theoretical predictions.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. R. Gattass and E. Mazur, Nat. Photon. 2, 219 (2008).
    [CrossRef]
  2. M. Ams, G. D. Marshall, P. Dekker, J. A. Piper, and M. J. Withford, Laser Photon. Rev. 3, 535 (2009).
    [CrossRef]
  3. G. D. Valle, R. Osellame, and P. Laporta, J. Opt. 11, 013001(2009).
    [CrossRef]
  4. A. Szameit and S. Nolte, J. Phys. B 43, 163001 (2010).
    [CrossRef]
  5. H. B. Zhang, S. M. Eaton, and P. R. Herman, Opt. Lett. 32, 2559 (2007).
    [CrossRef] [PubMed]
  6. M. Ams, P. Dekker, G. D. Marshall, and M. J. Withford, Opt. Lett. 34, 247 (2009).
    [CrossRef] [PubMed]
  7. J. P. Weber, IEE Proc. J 140, 275 (1993).
  8. J. I. Archambault, P. S. J. Russell, S. Barcelos, P. Hua, and L. Reekie, Opt. Lett. 19, 180 (1994).
    [CrossRef] [PubMed]
  9. A. S. Kewitsch, G. A. Rakuljic, P. A. Willems, and A. Yariv, Opt. Lett. 23, 106 (1998).
    [CrossRef]
  10. C. Riziotis and M. N. Zervas, J. Lightwave Technol. 19, 92 (2001).
    [CrossRef]
  11. G. Perrone, M. Laurenzano, and I. Montrosset, J. Lightwave Technol. 19, 1943 (2001).
    [CrossRef]
  12. M. Aslund, J. Canning, L. Poladian, C. M. de Sterke, and A. Judge, Appl. Opt. 42, 6578 (2003).
    [CrossRef] [PubMed]
  13. A. P. Luo, F. Bayle, E. Marin, J. P. Meunier, and Z. J. Fang, Opt. Commun. 231, 191 (2004).
    [CrossRef]
  14. J. M. Castro, D. F. Geraghty, S. Honkanen, C. M. Greiner, D. Iazikov, and T. W. Mossberg, Appl. Opt. 45, 1236 (2006).
    [CrossRef] [PubMed]
  15. J. B. Khurgin, M. W. Pruessner, T. H. Stievater, and W. S. Rabinovich, Opt. Lett. 32, 1253 (2007).
    [CrossRef] [PubMed]
  16. K. Muhieddine, A. Lupu, E. Cassan, and J. M. Lourtioz, Opt. Express 18, 23183 (2010).
    [CrossRef] [PubMed]
  17. G. D. Marshall, P. Dekker, M. Ams, J. A. Piper, and M. J. Withford, Opt. Lett. 33, 956 (2008).
    [CrossRef] [PubMed]
  18. S. Ha, A. A. Sukhorukov, and Y. S. Kivshar, Opt. Lett. 32, 1429 (2007).
    [CrossRef] [PubMed]
  19. S. Ha and A. A. Sukhorukov, J. Opt. Soc. Am. B 25, C15 (2008).
    [CrossRef]

2010

2009

M. Ams, P. Dekker, G. D. Marshall, and M. J. Withford, Opt. Lett. 34, 247 (2009).
[CrossRef] [PubMed]

M. Ams, G. D. Marshall, P. Dekker, J. A. Piper, and M. J. Withford, Laser Photon. Rev. 3, 535 (2009).
[CrossRef]

G. D. Valle, R. Osellame, and P. Laporta, J. Opt. 11, 013001(2009).
[CrossRef]

2008

2007

2006

2004

A. P. Luo, F. Bayle, E. Marin, J. P. Meunier, and Z. J. Fang, Opt. Commun. 231, 191 (2004).
[CrossRef]

2003

2001

1998

1994

1993

J. P. Weber, IEE Proc. J 140, 275 (1993).

Ams, M.

Archambault, J. I.

Aslund, M.

Barcelos, S.

Bayle, F.

A. P. Luo, F. Bayle, E. Marin, J. P. Meunier, and Z. J. Fang, Opt. Commun. 231, 191 (2004).
[CrossRef]

Canning, J.

Cassan, E.

Castro, J. M.

de Sterke, C. M.

Dekker, P.

Eaton, S. M.

Fang, Z. J.

A. P. Luo, F. Bayle, E. Marin, J. P. Meunier, and Z. J. Fang, Opt. Commun. 231, 191 (2004).
[CrossRef]

Gattass, R. R.

R. R. Gattass and E. Mazur, Nat. Photon. 2, 219 (2008).
[CrossRef]

Geraghty, D. F.

Greiner, C. M.

Ha, S.

Herman, P. R.

Honkanen, S.

Hua, P.

Iazikov, D.

Judge, A.

Kewitsch, A. S.

Khurgin, J. B.

Kivshar, Y. S.

Laporta, P.

G. D. Valle, R. Osellame, and P. Laporta, J. Opt. 11, 013001(2009).
[CrossRef]

Laurenzano, M.

Lourtioz, J. M.

Luo, A. P.

A. P. Luo, F. Bayle, E. Marin, J. P. Meunier, and Z. J. Fang, Opt. Commun. 231, 191 (2004).
[CrossRef]

Lupu, A.

Marin, E.

A. P. Luo, F. Bayle, E. Marin, J. P. Meunier, and Z. J. Fang, Opt. Commun. 231, 191 (2004).
[CrossRef]

Marshall, G. D.

Mazur, E.

R. R. Gattass and E. Mazur, Nat. Photon. 2, 219 (2008).
[CrossRef]

Meunier, J. P.

A. P. Luo, F. Bayle, E. Marin, J. P. Meunier, and Z. J. Fang, Opt. Commun. 231, 191 (2004).
[CrossRef]

Montrosset, I.

Mossberg, T. W.

Muhieddine, K.

Nolte, S.

A. Szameit and S. Nolte, J. Phys. B 43, 163001 (2010).
[CrossRef]

Osellame, R.

G. D. Valle, R. Osellame, and P. Laporta, J. Opt. 11, 013001(2009).
[CrossRef]

Perrone, G.

Piper, J. A.

M. Ams, G. D. Marshall, P. Dekker, J. A. Piper, and M. J. Withford, Laser Photon. Rev. 3, 535 (2009).
[CrossRef]

G. D. Marshall, P. Dekker, M. Ams, J. A. Piper, and M. J. Withford, Opt. Lett. 33, 956 (2008).
[CrossRef] [PubMed]

Poladian, L.

Pruessner, M. W.

Rabinovich, W. S.

Rakuljic, G. A.

Reekie, L.

Riziotis, C.

Russell, P. S. J.

Stievater, T. H.

Sukhorukov, A. A.

Szameit, A.

A. Szameit and S. Nolte, J. Phys. B 43, 163001 (2010).
[CrossRef]

Valle, G. D.

G. D. Valle, R. Osellame, and P. Laporta, J. Opt. 11, 013001(2009).
[CrossRef]

Weber, J. P.

J. P. Weber, IEE Proc. J 140, 275 (1993).

Willems, P. A.

Withford, M. J.

Yariv, A.

Zervas, M. N.

Zhang, H. B.

Appl. Opt.

IEE Proc. J

J. P. Weber, IEE Proc. J 140, 275 (1993).

J. Lightwave Technol.

J. Opt.

G. D. Valle, R. Osellame, and P. Laporta, J. Opt. 11, 013001(2009).
[CrossRef]

J. Opt. Soc. Am. B

J. Phys. B

A. Szameit and S. Nolte, J. Phys. B 43, 163001 (2010).
[CrossRef]

Laser Photon. Rev.

M. Ams, G. D. Marshall, P. Dekker, J. A. Piper, and M. J. Withford, Laser Photon. Rev. 3, 535 (2009).
[CrossRef]

Nat. Photon.

R. R. Gattass and E. Mazur, Nat. Photon. 2, 219 (2008).
[CrossRef]

Opt. Commun.

A. P. Luo, F. Bayle, E. Marin, J. P. Meunier, and Z. J. Fang, Opt. Commun. 231, 191 (2004).
[CrossRef]

Opt. Express

Opt. Lett.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

(a) Schematic of the Bragg grating coupler. Transmission differential interference contrast micrographs of (b) symmetric and (c) antisymmetric Bragg couplers. The 500 nm grating pitch is clearly visible in the horizontal direction while the vertical scale has been compressed by a factor of 4 for clarity. (d) Bragg grating coupler characterization setup.

Fig. 2
Fig. 2

Numerical analysis for (a), (c), (e), (g) symmetric and (b), (d), (f), (h) antisymmetric couplers. (a) ,(b) Schematic of the coupler geometry. (c), (d) Dispersion (wavenumber offset versus wavelength); (e), (f) group velocity relative to velocity away from Bragg resonance. Solid and dotted curves correspond to eigenmodes formed by counterpropagating (c), (e) even–even and odd–odd or (d), (f) even–odd and odd–even supermodes of coupled waveguides, respectively. (g), (h) Transmission through the first (solid curve) and second (dashed curve) output ports, with fixed 3.5 dB offset for direct comparison with experimental data.

Fig. 3
Fig. 3

Experimental results. Coupler geometry: (a) symmetric and (b) antisymmetric. Measured transmission spectra from the first (solid) and the second (dashed) waveguides of (c) symmetric and (d) antisymmetric coupler when the light is coupled to the first waveguide.

Metrics