Abstract

We investigate the optical modes in a coupled pair of semiconductor microdisks in symmetric and asymmetric configurations both experimentally and theoretically. While the quality factors of coupled first- and second-order whispering gallery modes (WGMs) show a conventional crossing, the quality factors of the same-order WGMs reveal an interesting splitting behavior, leading to the formation of high- and low-quality supermodes. Our results are reproduced by numerical simulations, and an explanation based on optical interference is suggested. Quality-factor splitting is a subtle phenomenon that might help to design microarchitectures for efficient optical coupling in cavity quantum electrodynamic experiments.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (4)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription