Abstract

We demonstrate the acquisition of stimulated Raman scattering spectra with the use of a single femtosecond pulse. High-resolution vibrational spectra are obtained by shifting the phase of a narrow band of frequencies within the input pulse spectrum, using spectral shaping. The vibrational lines are resolved via amplitude features formed in the spectrum after interaction with the sample. Using this technique, low-frequency Raman lines (<100cm1) are observed on both the Stokes and anti-Stokes sides.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Volkmer, J. Phys. D 38, R59 (2005).
    [CrossRef]
  2. C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, Science 322, 1857(2008).
    [CrossRef] [PubMed]
  3. P. Nandakumar, A. Kovalev, and A. Volkmer, New J. Phys. 11, 033026 (2009).
    [CrossRef]
  4. B. V. Vacano, T. Buckup, and M. Motzkus, Opt. Lett. 31, 2495 (2006).
    [CrossRef]
  5. E. Ploetz, B. Marx, T. Klein, R. Huber, and P. Gilch, Opt. Express 17, 18612 (2009).
    [CrossRef]
  6. D. Oron, N. Dudovich, and Y. Silberberg, Phys. Rev. Lett. 89, 273001 (2002).
    [CrossRef]
  7. O. Katz, A. Natan, Y. Silberberg, and S. Rosenwaks, Appl. Phys. Lett. 92, 171116 (2008).
    [CrossRef]
  8. N. Dudovich, D. Oron, and Y. Silberberg, J. Chem. Phys. 118, 9208 (2003).
    [CrossRef]
  9. C. Moser and F. Havermeyer, in The Proceedings of 22nd International Conference on Raman Spectroscopy(Academic, 2010), pp. 794–795.
  10. D. R. Austin, J. A. Bolger, C. M. de Sterke, and B. J. Eggleton, Opt. Express 14, 13142 (2006).
    [CrossRef] [PubMed]
  11. D. Oron, N. Dudovich, and Y. Silberberg, Phys. Rev. A 70, 023415 (2004).
    [CrossRef]
  12. M. S. Strano, C. A. Dyke, M. L. Usrey, P. W. Barone, M. J. Allen, H. Shan, C. Kittrell, R. H. Hauge, J. M. Tour, and R. E. Smalley, Science 301, 1519 (2003).
    [CrossRef] [PubMed]
  13. H. Urabe, Y. Sugawara, M. Ataka, and A. Rupprecht, Biophys. J. 74, 1533 (1998).
    [CrossRef] [PubMed]
  14. E. Frumker and Y. Silberberg, Opt. Lett. 32, 1384 (2007).
    [CrossRef] [PubMed]

2009 (2)

P. Nandakumar, A. Kovalev, and A. Volkmer, New J. Phys. 11, 033026 (2009).
[CrossRef]

E. Ploetz, B. Marx, T. Klein, R. Huber, and P. Gilch, Opt. Express 17, 18612 (2009).
[CrossRef]

2008 (2)

O. Katz, A. Natan, Y. Silberberg, and S. Rosenwaks, Appl. Phys. Lett. 92, 171116 (2008).
[CrossRef]

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, Science 322, 1857(2008).
[CrossRef] [PubMed]

2007 (1)

2006 (2)

2005 (1)

A. Volkmer, J. Phys. D 38, R59 (2005).
[CrossRef]

2004 (1)

D. Oron, N. Dudovich, and Y. Silberberg, Phys. Rev. A 70, 023415 (2004).
[CrossRef]

2003 (2)

M. S. Strano, C. A. Dyke, M. L. Usrey, P. W. Barone, M. J. Allen, H. Shan, C. Kittrell, R. H. Hauge, J. M. Tour, and R. E. Smalley, Science 301, 1519 (2003).
[CrossRef] [PubMed]

N. Dudovich, D. Oron, and Y. Silberberg, J. Chem. Phys. 118, 9208 (2003).
[CrossRef]

2002 (1)

D. Oron, N. Dudovich, and Y. Silberberg, Phys. Rev. Lett. 89, 273001 (2002).
[CrossRef]

1998 (1)

H. Urabe, Y. Sugawara, M. Ataka, and A. Rupprecht, Biophys. J. 74, 1533 (1998).
[CrossRef] [PubMed]

Allen, M. J.

M. S. Strano, C. A. Dyke, M. L. Usrey, P. W. Barone, M. J. Allen, H. Shan, C. Kittrell, R. H. Hauge, J. M. Tour, and R. E. Smalley, Science 301, 1519 (2003).
[CrossRef] [PubMed]

Ataka, M.

H. Urabe, Y. Sugawara, M. Ataka, and A. Rupprecht, Biophys. J. 74, 1533 (1998).
[CrossRef] [PubMed]

Austin, D. R.

Barone, P. W.

M. S. Strano, C. A. Dyke, M. L. Usrey, P. W. Barone, M. J. Allen, H. Shan, C. Kittrell, R. H. Hauge, J. M. Tour, and R. E. Smalley, Science 301, 1519 (2003).
[CrossRef] [PubMed]

Bolger, J. A.

Buckup, T.

de Sterke, C. M.

Dudovich, N.

D. Oron, N. Dudovich, and Y. Silberberg, Phys. Rev. A 70, 023415 (2004).
[CrossRef]

N. Dudovich, D. Oron, and Y. Silberberg, J. Chem. Phys. 118, 9208 (2003).
[CrossRef]

D. Oron, N. Dudovich, and Y. Silberberg, Phys. Rev. Lett. 89, 273001 (2002).
[CrossRef]

Dyke, C. A.

M. S. Strano, C. A. Dyke, M. L. Usrey, P. W. Barone, M. J. Allen, H. Shan, C. Kittrell, R. H. Hauge, J. M. Tour, and R. E. Smalley, Science 301, 1519 (2003).
[CrossRef] [PubMed]

Eggleton, B. J.

Freudiger, C. W.

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, Science 322, 1857(2008).
[CrossRef] [PubMed]

Frumker, E.

Gilch, P.

Hauge, R. H.

M. S. Strano, C. A. Dyke, M. L. Usrey, P. W. Barone, M. J. Allen, H. Shan, C. Kittrell, R. H. Hauge, J. M. Tour, and R. E. Smalley, Science 301, 1519 (2003).
[CrossRef] [PubMed]

Havermeyer, F.

C. Moser and F. Havermeyer, in The Proceedings of 22nd International Conference on Raman Spectroscopy(Academic, 2010), pp. 794–795.

He, C.

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, Science 322, 1857(2008).
[CrossRef] [PubMed]

Holtom, G. R.

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, Science 322, 1857(2008).
[CrossRef] [PubMed]

Huber, R.

Kang, J. X.

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, Science 322, 1857(2008).
[CrossRef] [PubMed]

Katz, O.

O. Katz, A. Natan, Y. Silberberg, and S. Rosenwaks, Appl. Phys. Lett. 92, 171116 (2008).
[CrossRef]

Kittrell, C.

M. S. Strano, C. A. Dyke, M. L. Usrey, P. W. Barone, M. J. Allen, H. Shan, C. Kittrell, R. H. Hauge, J. M. Tour, and R. E. Smalley, Science 301, 1519 (2003).
[CrossRef] [PubMed]

Klein, T.

Kovalev, A.

P. Nandakumar, A. Kovalev, and A. Volkmer, New J. Phys. 11, 033026 (2009).
[CrossRef]

Lu, S.

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, Science 322, 1857(2008).
[CrossRef] [PubMed]

Marx, B.

Min, W.

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, Science 322, 1857(2008).
[CrossRef] [PubMed]

Moser, C.

C. Moser and F. Havermeyer, in The Proceedings of 22nd International Conference on Raman Spectroscopy(Academic, 2010), pp. 794–795.

Motzkus, M.

Nandakumar, P.

P. Nandakumar, A. Kovalev, and A. Volkmer, New J. Phys. 11, 033026 (2009).
[CrossRef]

Natan, A.

O. Katz, A. Natan, Y. Silberberg, and S. Rosenwaks, Appl. Phys. Lett. 92, 171116 (2008).
[CrossRef]

Oron, D.

D. Oron, N. Dudovich, and Y. Silberberg, Phys. Rev. A 70, 023415 (2004).
[CrossRef]

N. Dudovich, D. Oron, and Y. Silberberg, J. Chem. Phys. 118, 9208 (2003).
[CrossRef]

D. Oron, N. Dudovich, and Y. Silberberg, Phys. Rev. Lett. 89, 273001 (2002).
[CrossRef]

Ploetz, E.

Rosenwaks, S.

O. Katz, A. Natan, Y. Silberberg, and S. Rosenwaks, Appl. Phys. Lett. 92, 171116 (2008).
[CrossRef]

Rupprecht, A.

H. Urabe, Y. Sugawara, M. Ataka, and A. Rupprecht, Biophys. J. 74, 1533 (1998).
[CrossRef] [PubMed]

Saar, B. G.

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, Science 322, 1857(2008).
[CrossRef] [PubMed]

Shan, H.

M. S. Strano, C. A. Dyke, M. L. Usrey, P. W. Barone, M. J. Allen, H. Shan, C. Kittrell, R. H. Hauge, J. M. Tour, and R. E. Smalley, Science 301, 1519 (2003).
[CrossRef] [PubMed]

Silberberg, Y.

O. Katz, A. Natan, Y. Silberberg, and S. Rosenwaks, Appl. Phys. Lett. 92, 171116 (2008).
[CrossRef]

E. Frumker and Y. Silberberg, Opt. Lett. 32, 1384 (2007).
[CrossRef] [PubMed]

D. Oron, N. Dudovich, and Y. Silberberg, Phys. Rev. A 70, 023415 (2004).
[CrossRef]

N. Dudovich, D. Oron, and Y. Silberberg, J. Chem. Phys. 118, 9208 (2003).
[CrossRef]

D. Oron, N. Dudovich, and Y. Silberberg, Phys. Rev. Lett. 89, 273001 (2002).
[CrossRef]

Smalley, R. E.

M. S. Strano, C. A. Dyke, M. L. Usrey, P. W. Barone, M. J. Allen, H. Shan, C. Kittrell, R. H. Hauge, J. M. Tour, and R. E. Smalley, Science 301, 1519 (2003).
[CrossRef] [PubMed]

Strano, M. S.

M. S. Strano, C. A. Dyke, M. L. Usrey, P. W. Barone, M. J. Allen, H. Shan, C. Kittrell, R. H. Hauge, J. M. Tour, and R. E. Smalley, Science 301, 1519 (2003).
[CrossRef] [PubMed]

Sugawara, Y.

H. Urabe, Y. Sugawara, M. Ataka, and A. Rupprecht, Biophys. J. 74, 1533 (1998).
[CrossRef] [PubMed]

Tour, J. M.

M. S. Strano, C. A. Dyke, M. L. Usrey, P. W. Barone, M. J. Allen, H. Shan, C. Kittrell, R. H. Hauge, J. M. Tour, and R. E. Smalley, Science 301, 1519 (2003).
[CrossRef] [PubMed]

Tsai, J. C.

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, Science 322, 1857(2008).
[CrossRef] [PubMed]

Urabe, H.

H. Urabe, Y. Sugawara, M. Ataka, and A. Rupprecht, Biophys. J. 74, 1533 (1998).
[CrossRef] [PubMed]

Usrey, M. L.

M. S. Strano, C. A. Dyke, M. L. Usrey, P. W. Barone, M. J. Allen, H. Shan, C. Kittrell, R. H. Hauge, J. M. Tour, and R. E. Smalley, Science 301, 1519 (2003).
[CrossRef] [PubMed]

Vacano, B. V.

Volkmer, A.

P. Nandakumar, A. Kovalev, and A. Volkmer, New J. Phys. 11, 033026 (2009).
[CrossRef]

A. Volkmer, J. Phys. D 38, R59 (2005).
[CrossRef]

Xie, X. S.

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, Science 322, 1857(2008).
[CrossRef] [PubMed]

Appl. Phys. Lett. (1)

O. Katz, A. Natan, Y. Silberberg, and S. Rosenwaks, Appl. Phys. Lett. 92, 171116 (2008).
[CrossRef]

Biophys. J. (1)

H. Urabe, Y. Sugawara, M. Ataka, and A. Rupprecht, Biophys. J. 74, 1533 (1998).
[CrossRef] [PubMed]

J. Chem. Phys. (1)

N. Dudovich, D. Oron, and Y. Silberberg, J. Chem. Phys. 118, 9208 (2003).
[CrossRef]

J. Phys. D (1)

A. Volkmer, J. Phys. D 38, R59 (2005).
[CrossRef]

New J. Phys. (1)

P. Nandakumar, A. Kovalev, and A. Volkmer, New J. Phys. 11, 033026 (2009).
[CrossRef]

Opt. Express (2)

Opt. Lett. (2)

Phys. Rev. A (1)

D. Oron, N. Dudovich, and Y. Silberberg, Phys. Rev. A 70, 023415 (2004).
[CrossRef]

Phys. Rev. Lett. (1)

D. Oron, N. Dudovich, and Y. Silberberg, Phys. Rev. Lett. 89, 273001 (2002).
[CrossRef]

Science (2)

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, Science 322, 1857(2008).
[CrossRef] [PubMed]

M. S. Strano, C. A. Dyke, M. L. Usrey, P. W. Barone, M. J. Allen, H. Shan, C. Kittrell, R. H. Hauge, J. M. Tour, and R. E. Smalley, Science 301, 1519 (2003).
[CrossRef] [PubMed]

Other (1)

C. Moser and F. Havermeyer, in The Proceedings of 22nd International Conference on Raman Spectroscopy(Academic, 2010), pp. 794–795.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

(a) Energy level diagram of the SRS process that creates signal at ω p . (b) Simulated spectra of the input pulse (black) and the resonant signal (purple) it generates from a sample with a single line at 300 cm 1 . (c) Simulated spectrum (black) and phase (green) of a pulse shaped with a π phase gate and the spectrum of the resonant signal (purple) it generates from the same sample. (d) Schematic of the experimental setup. The incoming pulses are phase-shaped using a liquid-crystal SLM. The beam is then focused onto the sample using a 15 cm lens and the transmitted light is collected by a 0.5 NA lens and coupled into a CCD-based spectrometer. For samples in powder form, the backscattered light is collected and coupled into the spectrometer.

Fig. 2
Fig. 2

SPSRS spectra of several samples. The Raman lines are plotted on top for reference. (a) Chloroform anti-Stokes spectrum. (b) Chloroform Stokes spectrum. (c) Dibromomethane Stokes spectrum. (d) Powdered sulfur spectrum; the phase gate area is marked in gray. Spectra (a)–(c) were resolved from the difference between two measurements with a 400 ms integration time. Spectrum (d) was averaged over ten such differential measurements. The differences between the resonant feature shapes in (a) and (b), as well as the spectral features in the vicinity of the gate in (d), are due to propagation effects. These effects are substantially reduced when using weaker input pulses.

Fig. 3
Fig. 3

Coherent addition of Raman lines in carbon tetrachloride. (a) Spectrum generated by a pulse shaped with a single phase gate at 780 nm , showing two Raman lines: 218 cm 1 (at 793 nm ) and 314 cm 1 (at 799 nm ). (b) Spectrum generated by a pulse shaped with two phase gates at 780 and 786 nm . The 314 cm 1 line of the first phase gate and the 218 cm 1 line of the second phase gate both occur at 799 nm . The resulting peak-to-dip difference approximately equals the sum of the peak-to-dip differences of the two Raman lines in (a). Inset, corresponding spectral phase masks.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

I total = | E in + E nr + E r | 2 I in + 2 | E in | | E nr | cos ϕ nr + 2 | E in | | E r | cos ϕ r ,

Metrics