Abstract

We report a type of quasi-phase-matched (QPM) Cerenkov third-harmonic generation (CTHG) in a periodic-poled LiTaO3 waveguide. The CTHG results from a guided-to-guided second-harmonic generation cascaded with a guided-to-radiated sum-frequency generation (SFG) in the waveguide. In the guided-to-radiated SFG process, nonlinear interactions with participating and nonparticipating reciprocal vectors would lead to different CTHG radiations. In addition, the power and temperature detuning characters of QPM CTHG were studied. Theoretical predictions were in good agreement with experimental results.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. K. Tien, R. Ulrich, and R. J. Martin, Appl. Phys. Lett. 17, 447 (1970).
    [CrossRef]
  2. N. A. Sanford and J. M. Connors, J. Appl. Phys. 65, 1429 (1989).
    [CrossRef]
  3. M. J. Li, M. De Micheli, Q. He, and D. B. Ostrowsky, IEEE J. Quantum Electron. 26, 1384 (1990).
    [CrossRef]
  4. K. Yamamoto, H. Yamamoto, and T. Taniuchi, Appl. Phys. Lett. 58, 1227 (1991).
    [CrossRef]
  5. C. Chen, J. Su, Y. Zhang, P. Xu, X. Hu, G. Zhao, Y. Liu, X. Lv, and S. Zhu, Appl. Phys. Lett. 97, 161112 (2010).
    [CrossRef]
  6. Y. Zhang, Z. D. Gao, Z. Qi, S. N. Zhu, and N. B. Ming, Phys. Rev. Lett. 100, 163904 (2008).
    [CrossRef] [PubMed]
  7. H. Tamada, IEEE J. Quantum Electron. 27, 502 (1991).
    [CrossRef]
  8. M. Vaya, K. Thyagarajan, and A. Kumar, J. Opt. Soc. Am. B 15, 1322 (1998).
    [CrossRef]
  9. K. Hayata, H. Matsumura, and M. Koshiba, J. Appl. Phys. 70, 1157 (1991).
    [CrossRef]
  10. P. G. Suchoski, T. K. Findakly, and F. J. Leonberger, Opt. Lett. 13, 1050 (1988).
    [CrossRef] [PubMed]
  11. R. Ivanov, K. Koynov, and S. Saltiel, Opt. Commun. 212, 397 (2002).
    [CrossRef]
  12. X. P. Hu, G. Zhao, C. Zhang, Z. D. Xie, J. L. He, and S. N. Zhu, Appl. Phys. B 87, 91 (2007).
    [CrossRef]

2010

C. Chen, J. Su, Y. Zhang, P. Xu, X. Hu, G. Zhao, Y. Liu, X. Lv, and S. Zhu, Appl. Phys. Lett. 97, 161112 (2010).
[CrossRef]

2008

Y. Zhang, Z. D. Gao, Z. Qi, S. N. Zhu, and N. B. Ming, Phys. Rev. Lett. 100, 163904 (2008).
[CrossRef] [PubMed]

2007

X. P. Hu, G. Zhao, C. Zhang, Z. D. Xie, J. L. He, and S. N. Zhu, Appl. Phys. B 87, 91 (2007).
[CrossRef]

2002

R. Ivanov, K. Koynov, and S. Saltiel, Opt. Commun. 212, 397 (2002).
[CrossRef]

1998

1991

K. Hayata, H. Matsumura, and M. Koshiba, J. Appl. Phys. 70, 1157 (1991).
[CrossRef]

H. Tamada, IEEE J. Quantum Electron. 27, 502 (1991).
[CrossRef]

K. Yamamoto, H. Yamamoto, and T. Taniuchi, Appl. Phys. Lett. 58, 1227 (1991).
[CrossRef]

1990

M. J. Li, M. De Micheli, Q. He, and D. B. Ostrowsky, IEEE J. Quantum Electron. 26, 1384 (1990).
[CrossRef]

1989

N. A. Sanford and J. M. Connors, J. Appl. Phys. 65, 1429 (1989).
[CrossRef]

1988

1970

P. K. Tien, R. Ulrich, and R. J. Martin, Appl. Phys. Lett. 17, 447 (1970).
[CrossRef]

Chen, C.

C. Chen, J. Su, Y. Zhang, P. Xu, X. Hu, G. Zhao, Y. Liu, X. Lv, and S. Zhu, Appl. Phys. Lett. 97, 161112 (2010).
[CrossRef]

Connors, J. M.

N. A. Sanford and J. M. Connors, J. Appl. Phys. 65, 1429 (1989).
[CrossRef]

De Micheli, M.

M. J. Li, M. De Micheli, Q. He, and D. B. Ostrowsky, IEEE J. Quantum Electron. 26, 1384 (1990).
[CrossRef]

Findakly, T. K.

Gao, Z. D.

Y. Zhang, Z. D. Gao, Z. Qi, S. N. Zhu, and N. B. Ming, Phys. Rev. Lett. 100, 163904 (2008).
[CrossRef] [PubMed]

Hayata, K.

K. Hayata, H. Matsumura, and M. Koshiba, J. Appl. Phys. 70, 1157 (1991).
[CrossRef]

He, J. L.

X. P. Hu, G. Zhao, C. Zhang, Z. D. Xie, J. L. He, and S. N. Zhu, Appl. Phys. B 87, 91 (2007).
[CrossRef]

He, Q.

M. J. Li, M. De Micheli, Q. He, and D. B. Ostrowsky, IEEE J. Quantum Electron. 26, 1384 (1990).
[CrossRef]

Hu, X.

C. Chen, J. Su, Y. Zhang, P. Xu, X. Hu, G. Zhao, Y. Liu, X. Lv, and S. Zhu, Appl. Phys. Lett. 97, 161112 (2010).
[CrossRef]

Hu, X. P.

X. P. Hu, G. Zhao, C. Zhang, Z. D. Xie, J. L. He, and S. N. Zhu, Appl. Phys. B 87, 91 (2007).
[CrossRef]

Ivanov, R.

R. Ivanov, K. Koynov, and S. Saltiel, Opt. Commun. 212, 397 (2002).
[CrossRef]

Koshiba, M.

K. Hayata, H. Matsumura, and M. Koshiba, J. Appl. Phys. 70, 1157 (1991).
[CrossRef]

Koynov, K.

R. Ivanov, K. Koynov, and S. Saltiel, Opt. Commun. 212, 397 (2002).
[CrossRef]

Kumar, A.

Leonberger, F. J.

Li, M. J.

M. J. Li, M. De Micheli, Q. He, and D. B. Ostrowsky, IEEE J. Quantum Electron. 26, 1384 (1990).
[CrossRef]

Liu, Y.

C. Chen, J. Su, Y. Zhang, P. Xu, X. Hu, G. Zhao, Y. Liu, X. Lv, and S. Zhu, Appl. Phys. Lett. 97, 161112 (2010).
[CrossRef]

Lv, X.

C. Chen, J. Su, Y. Zhang, P. Xu, X. Hu, G. Zhao, Y. Liu, X. Lv, and S. Zhu, Appl. Phys. Lett. 97, 161112 (2010).
[CrossRef]

Martin, R. J.

P. K. Tien, R. Ulrich, and R. J. Martin, Appl. Phys. Lett. 17, 447 (1970).
[CrossRef]

Matsumura, H.

K. Hayata, H. Matsumura, and M. Koshiba, J. Appl. Phys. 70, 1157 (1991).
[CrossRef]

Ming, N. B.

Y. Zhang, Z. D. Gao, Z. Qi, S. N. Zhu, and N. B. Ming, Phys. Rev. Lett. 100, 163904 (2008).
[CrossRef] [PubMed]

Ostrowsky, D. B.

M. J. Li, M. De Micheli, Q. He, and D. B. Ostrowsky, IEEE J. Quantum Electron. 26, 1384 (1990).
[CrossRef]

Qi, Z.

Y. Zhang, Z. D. Gao, Z. Qi, S. N. Zhu, and N. B. Ming, Phys. Rev. Lett. 100, 163904 (2008).
[CrossRef] [PubMed]

Saltiel, S.

R. Ivanov, K. Koynov, and S. Saltiel, Opt. Commun. 212, 397 (2002).
[CrossRef]

Sanford, N. A.

N. A. Sanford and J. M. Connors, J. Appl. Phys. 65, 1429 (1989).
[CrossRef]

Su, J.

C. Chen, J. Su, Y. Zhang, P. Xu, X. Hu, G. Zhao, Y. Liu, X. Lv, and S. Zhu, Appl. Phys. Lett. 97, 161112 (2010).
[CrossRef]

Suchoski, P. G.

Tamada, H.

H. Tamada, IEEE J. Quantum Electron. 27, 502 (1991).
[CrossRef]

Taniuchi, T.

K. Yamamoto, H. Yamamoto, and T. Taniuchi, Appl. Phys. Lett. 58, 1227 (1991).
[CrossRef]

Thyagarajan, K.

Tien, P. K.

P. K. Tien, R. Ulrich, and R. J. Martin, Appl. Phys. Lett. 17, 447 (1970).
[CrossRef]

Ulrich, R.

P. K. Tien, R. Ulrich, and R. J. Martin, Appl. Phys. Lett. 17, 447 (1970).
[CrossRef]

Vaya, M.

Xie, Z. D.

X. P. Hu, G. Zhao, C. Zhang, Z. D. Xie, J. L. He, and S. N. Zhu, Appl. Phys. B 87, 91 (2007).
[CrossRef]

Xu, P.

C. Chen, J. Su, Y. Zhang, P. Xu, X. Hu, G. Zhao, Y. Liu, X. Lv, and S. Zhu, Appl. Phys. Lett. 97, 161112 (2010).
[CrossRef]

Yamamoto, H.

K. Yamamoto, H. Yamamoto, and T. Taniuchi, Appl. Phys. Lett. 58, 1227 (1991).
[CrossRef]

Yamamoto, K.

K. Yamamoto, H. Yamamoto, and T. Taniuchi, Appl. Phys. Lett. 58, 1227 (1991).
[CrossRef]

Zhang, C.

X. P. Hu, G. Zhao, C. Zhang, Z. D. Xie, J. L. He, and S. N. Zhu, Appl. Phys. B 87, 91 (2007).
[CrossRef]

Zhang, Y.

C. Chen, J. Su, Y. Zhang, P. Xu, X. Hu, G. Zhao, Y. Liu, X. Lv, and S. Zhu, Appl. Phys. Lett. 97, 161112 (2010).
[CrossRef]

Y. Zhang, Z. D. Gao, Z. Qi, S. N. Zhu, and N. B. Ming, Phys. Rev. Lett. 100, 163904 (2008).
[CrossRef] [PubMed]

Zhao, G.

C. Chen, J. Su, Y. Zhang, P. Xu, X. Hu, G. Zhao, Y. Liu, X. Lv, and S. Zhu, Appl. Phys. Lett. 97, 161112 (2010).
[CrossRef]

X. P. Hu, G. Zhao, C. Zhang, Z. D. Xie, J. L. He, and S. N. Zhu, Appl. Phys. B 87, 91 (2007).
[CrossRef]

Zhu, S.

C. Chen, J. Su, Y. Zhang, P. Xu, X. Hu, G. Zhao, Y. Liu, X. Lv, and S. Zhu, Appl. Phys. Lett. 97, 161112 (2010).
[CrossRef]

Zhu, S. N.

Y. Zhang, Z. D. Gao, Z. Qi, S. N. Zhu, and N. B. Ming, Phys. Rev. Lett. 100, 163904 (2008).
[CrossRef] [PubMed]

X. P. Hu, G. Zhao, C. Zhang, Z. D. Xie, J. L. He, and S. N. Zhu, Appl. Phys. B 87, 91 (2007).
[CrossRef]

Appl. Phys. B

X. P. Hu, G. Zhao, C. Zhang, Z. D. Xie, J. L. He, and S. N. Zhu, Appl. Phys. B 87, 91 (2007).
[CrossRef]

Appl. Phys. Lett.

P. K. Tien, R. Ulrich, and R. J. Martin, Appl. Phys. Lett. 17, 447 (1970).
[CrossRef]

K. Yamamoto, H. Yamamoto, and T. Taniuchi, Appl. Phys. Lett. 58, 1227 (1991).
[CrossRef]

C. Chen, J. Su, Y. Zhang, P. Xu, X. Hu, G. Zhao, Y. Liu, X. Lv, and S. Zhu, Appl. Phys. Lett. 97, 161112 (2010).
[CrossRef]

IEEE J. Quantum Electron.

H. Tamada, IEEE J. Quantum Electron. 27, 502 (1991).
[CrossRef]

M. J. Li, M. De Micheli, Q. He, and D. B. Ostrowsky, IEEE J. Quantum Electron. 26, 1384 (1990).
[CrossRef]

J. Appl. Phys.

K. Hayata, H. Matsumura, and M. Koshiba, J. Appl. Phys. 70, 1157 (1991).
[CrossRef]

N. A. Sanford and J. M. Connors, J. Appl. Phys. 65, 1429 (1989).
[CrossRef]

J. Opt. Soc. Am. B

Opt. Commun.

R. Ivanov, K. Koynov, and S. Saltiel, Opt. Commun. 212, 397 (2002).
[CrossRef]

Opt. Lett.

Phys. Rev. Lett.

Y. Zhang, Z. D. Gao, Z. Qi, S. N. Zhu, and N. B. Ming, Phys. Rev. Lett. 100, 163904 (2008).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Simplified layout of the experimental setup.

Fig. 2
Fig. 2

Projection of the radiated Cerenkov SHG (two red spots, 2 and 4) and QPM Cerenkov THG (four blue spots, 1, 3, 5, and 6) at an input power of 500 mW and (a) the calculated distribution of all the spots on the (b) screen. (d) Projection of QPM Cerenkov THG with higher-order backward reciprocal vectors involved at an input power of 600 mW and the (c) simulations of their positions.

Fig. 3
Fig. 3

The phase-matching geometry of Cerenkov THG without any reciprocal vectors and with reciprocal vectors G 1 , G 1 , and G 2 .

Fig. 4
Fig. 4

Dependence of Cerenkov TH power on input fundamental power at 1342 nm .

Fig. 5
Fig. 5

Temperature tuning curves for Cerenkov TH and waveguide SHG.

Tables (1)

Tables Icon

Table 1 Experimental ( θ E ) and Theoretical ( θ T ) Emission Angles of CTHG

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

| β ( ω ) + β ( 2 ω ) | = | k ( 3 ω ) | cos θ 1 ,
| β ( ω ) + β ( 2 ω ) + G m | = | k ( 3 ω ) | cos θ 2 ,
| β ( ω ) + β ( 2 ω ) + G m | < | k ( 3 ω ) | .
P ( 3 ω ) P 3 ( ω ) L 3 d SFG 2 ( sin Δ β L Δ β L ) 2 κ 2 | S | 2 d SFG 2 | β ( ω ) + β ( 2 ω ) + G m | ρ ,

Metrics