Abstract

A 1064nm pumped continuous-wave, mid-IR (34μm), signal-wave resonant optical parametric oscillator is frequency stabilized at the kilohertz jitter level to the transmission peak of an external high-finesse Fabry–Perot cavity. Owing to the high stability of the resonator length against acoustical perturbation, fine pump tuning of the idler wave around 3.3μm results in an unprecedented mode-hop-free continuous scan over 500GHz (17cm1).

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. J. W. Van Herpen, S. E. Bisson, A. K. Y. Ngai, and F. J. M. Harren, Appl. Phys. B 78, 281 (2004).
    [CrossRef]
  2. A. Henderson and R. Stafford, Opt. Express 14, 767 (2006).
    [CrossRef] [PubMed]
  3. R. Das, S. C. Kumar, G. K. Samanta, and M. Ebrahim-Zadeh, Opt. Lett. 34, 3836 (2009).
    [CrossRef] [PubMed]
  4. O. Gayer, A. Sacks, E. Galun, and A. Arie, Appl. Phys. B 91, 343 (2008).
    [CrossRef]
  5. J. Hough, D. Hils, M. D. Rayman, L.-S. Ma, L. Hollberg, and J. L. Hall, Appl. Phys. B 33, 179 (1984).
    [CrossRef]
  6. O. Mhibik, T.-H. My, D. Paboeuf, F. Bretenaker, and C. Drag, Opt. Lett. 35, 2364 (2010).
    [CrossRef] [PubMed]

2010 (1)

2009 (1)

2008 (1)

O. Gayer, A. Sacks, E. Galun, and A. Arie, Appl. Phys. B 91, 343 (2008).
[CrossRef]

2006 (1)

2004 (1)

M. J. W. Van Herpen, S. E. Bisson, A. K. Y. Ngai, and F. J. M. Harren, Appl. Phys. B 78, 281 (2004).
[CrossRef]

1984 (1)

J. Hough, D. Hils, M. D. Rayman, L.-S. Ma, L. Hollberg, and J. L. Hall, Appl. Phys. B 33, 179 (1984).
[CrossRef]

Arie, A.

O. Gayer, A. Sacks, E. Galun, and A. Arie, Appl. Phys. B 91, 343 (2008).
[CrossRef]

Bisson, S. E.

M. J. W. Van Herpen, S. E. Bisson, A. K. Y. Ngai, and F. J. M. Harren, Appl. Phys. B 78, 281 (2004).
[CrossRef]

Bretenaker, F.

Das, R.

Drag, C.

Ebrahim-Zadeh, M.

Galun, E.

O. Gayer, A. Sacks, E. Galun, and A. Arie, Appl. Phys. B 91, 343 (2008).
[CrossRef]

Gayer, O.

O. Gayer, A. Sacks, E. Galun, and A. Arie, Appl. Phys. B 91, 343 (2008).
[CrossRef]

Hall, J. L.

J. Hough, D. Hils, M. D. Rayman, L.-S. Ma, L. Hollberg, and J. L. Hall, Appl. Phys. B 33, 179 (1984).
[CrossRef]

Harren, F. J. M.

M. J. W. Van Herpen, S. E. Bisson, A. K. Y. Ngai, and F. J. M. Harren, Appl. Phys. B 78, 281 (2004).
[CrossRef]

Henderson, A.

Hils, D.

J. Hough, D. Hils, M. D. Rayman, L.-S. Ma, L. Hollberg, and J. L. Hall, Appl. Phys. B 33, 179 (1984).
[CrossRef]

Hollberg, L.

J. Hough, D. Hils, M. D. Rayman, L.-S. Ma, L. Hollberg, and J. L. Hall, Appl. Phys. B 33, 179 (1984).
[CrossRef]

Hough, J.

J. Hough, D. Hils, M. D. Rayman, L.-S. Ma, L. Hollberg, and J. L. Hall, Appl. Phys. B 33, 179 (1984).
[CrossRef]

Kumar, S. C.

Ma, L.-S.

J. Hough, D. Hils, M. D. Rayman, L.-S. Ma, L. Hollberg, and J. L. Hall, Appl. Phys. B 33, 179 (1984).
[CrossRef]

Mhibik, O.

My, T.-H.

Ngai, A. K. Y.

M. J. W. Van Herpen, S. E. Bisson, A. K. Y. Ngai, and F. J. M. Harren, Appl. Phys. B 78, 281 (2004).
[CrossRef]

Paboeuf, D.

Rayman, M. D.

J. Hough, D. Hils, M. D. Rayman, L.-S. Ma, L. Hollberg, and J. L. Hall, Appl. Phys. B 33, 179 (1984).
[CrossRef]

Sacks, A.

O. Gayer, A. Sacks, E. Galun, and A. Arie, Appl. Phys. B 91, 343 (2008).
[CrossRef]

Samanta, G. K.

Stafford, R.

Van Herpen, M. J. W.

M. J. W. Van Herpen, S. E. Bisson, A. K. Y. Ngai, and F. J. M. Harren, Appl. Phys. B 78, 281 (2004).
[CrossRef]

Appl. Phys. B (3)

M. J. W. Van Herpen, S. E. Bisson, A. K. Y. Ngai, and F. J. M. Harren, Appl. Phys. B 78, 281 (2004).
[CrossRef]

O. Gayer, A. Sacks, E. Galun, and A. Arie, Appl. Phys. B 91, 343 (2008).
[CrossRef]

J. Hough, D. Hils, M. D. Rayman, L.-S. Ma, L. Hollberg, and J. L. Hall, Appl. Phys. B 33, 179 (1984).
[CrossRef]

Opt. Express (1)

Opt. Lett. (2)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Experimental setup of the frequency- stabilized SRO. FI: 40 dB Faraday isolator. See text for further details.

Fig. 2
Fig. 2

Idler power spectrum at 3 times pumping above threshold, by using five grating channels operated between T = 30 ° C and T = 200 ° C . The inset figure displays the calculated parametric gain curve at fixed λ s 1550 nm and T = 40 ° C , showing a flat gain region over 1.3 THz .

Fig. 3
Fig. 3

(a) Idler tuning of the free-running SRO, showing two signal mode-hop events (the inset shows the YAG etalon mode-hop tuning curve at fixed pump). (b) Continuous MHF idler tuning over Δ ν i 500 GHz of the frequency-stabilized SRO. Inset: part of a solid Ge etalon idler fringes ( FSR = 1.5 GHz ) recorded during the pump scan.

Fig. 4
Fig. 4

Signal frequency power spectral density: (a) free-running SRO; (b) frequency-stabilized to the F-P with the optimal servo gain. Baseline (c) is the electronic detection noise floor.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

δ ν s = π 0 BW S ν ( f ) d f 4 kHz ,

Metrics