Abstract

We demonstrate a simple approach for broadening and compression of intense pulses at megahertz repetition rates by self-phase modulation in nonlinear photonic crystal fibers. In order to avoid damage by self-focusing, we positively chirp the input pulses, which allows coupling of significantly more energy into the fiber, while maintaining the same spectral bandwidth and compression as compared to the Fourier-limited case at lower energy. Using a commercial long-cavity Ti:sapphire oscillator with 55fs, 400nJ pulses at 5MHz, we generate 16fs, 350nJ pulses, which is a factor of 4 more energy than possible with unchirped input pulses. Self-phase-modulated spectra supporting 11fs duration are also shown with 350nJ pulse energy. Excellent stability is recorded over at least 1h.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (5)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription