Abstract

A maximum output power of 20.6W at 2.825μm from an erbium-doped all-fiber laser is reported, which we believe is the highest output power for this laser transition in single-mode operation. The slope efficiency of the passively cooled laser was up to 35.4% with respect to the absorbed pump power. Accounting for an estimated round-trip intracavity loss of 1.3dB, we calculated a theoretical conversion efficiency of 39.5%, which is 15% higher than the Stokes efficiency of 34.3%. We believe this is the first experimental confirmation of the predicted pump energy recycling for this fiber laser. The narrow laser linewidth varied from 0.09 to 0.16nm from low to maximum output power.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Bernier, D. Faucher, R. Vallée, A. Saliminia, G. Androz, Y. Sheng, and S. L. Chin, Opt. Lett. 32, 454 (2007)
    [CrossRef] [PubMed]
  2. S. Tokita, M. Murakami, S. Shimizu, M. Hashida, and S. Sakabe, Opt. Lett. 34, 3062 (2009)
    [CrossRef] [PubMed]
  3. X. Zhu and R. K. Jain, Appl. Opt. 45, 7118 (2006)
    [CrossRef] [PubMed]
  4. S. D. Jackson, Electron. Lett. 45, 830 (2009)
    [CrossRef]
  5. M. Pollnau and S. D. Jackson, IEEE J. Quantum Electron. 38, 162 (2002)
    [CrossRef]
  6. C. Wyss, W. Lüthy, H. P. Weber, P. Rogin, and J. Hulliger, Opt. Commun. 139, 215 (1997)
    [CrossRef]
  7. X. Zhu and R. Jain, Opt. Lett. 32, 2381 (2007)
    [CrossRef] [PubMed]
  8. S. Tokita, M. Hirokane, M. Murakami, S. Shimizu, M. Hashida, and S. Sakabe, Opt. Lett. 35, 3943 (2010)
    [CrossRef] [PubMed]
  9. X. Zhu and R. Jain, Opt. Lett. 33, 1578 (2008)
    [CrossRef] [PubMed]
  10. D. Faucher, M. Bernier, N. Caron, and R. Vallée, Opt. Lett. 34, 3313 (2009)
    [CrossRef] [PubMed]
  11. M. Bernier, D. Faucher, N. Caron, and R. Vallée, Opt. Express 17, 16941 (2009)
    [CrossRef] [PubMed]
  12. M. Pollnau and S. D. Jackson, IEEE J. Sel. Top. Quantum Electron. 7, 30 (2001)
    [CrossRef]
  13. P. S. Golding, S. D. Jackson, T. A. King, and M. Pollnau, Phys. Rev. B 62, 856 (2000)
    [CrossRef]
  14. M. Gorjan, M. Marincek, and M. Copic, IEEE J. Quantum Electron. 47, 262 (2011)
    [CrossRef]
  15. M. Gorjan, M. Marincek, and M. Copic, J. Opt. Soc. Am. B 27, 2784 (2010)
    [CrossRef]

2011 (1)

M. Gorjan, M. Marincek, and M. Copic, IEEE J. Quantum Electron. 47, 262 (2011)
[CrossRef]

2010 (2)

2009 (4)

2008 (1)

2007 (2)

2006 (1)

2002 (1)

M. Pollnau and S. D. Jackson, IEEE J. Quantum Electron. 38, 162 (2002)
[CrossRef]

2001 (1)

M. Pollnau and S. D. Jackson, IEEE J. Sel. Top. Quantum Electron. 7, 30 (2001)
[CrossRef]

2000 (1)

P. S. Golding, S. D. Jackson, T. A. King, and M. Pollnau, Phys. Rev. B 62, 856 (2000)
[CrossRef]

1997 (1)

C. Wyss, W. Lüthy, H. P. Weber, P. Rogin, and J. Hulliger, Opt. Commun. 139, 215 (1997)
[CrossRef]

Androz, G.

Bernier, M.

Caron, N.

Chin, S. L.

Copic, M.

M. Gorjan, M. Marincek, and M. Copic, IEEE J. Quantum Electron. 47, 262 (2011)
[CrossRef]

M. Gorjan, M. Marincek, and M. Copic, J. Opt. Soc. Am. B 27, 2784 (2010)
[CrossRef]

Faucher, D.

Golding, P. S.

P. S. Golding, S. D. Jackson, T. A. King, and M. Pollnau, Phys. Rev. B 62, 856 (2000)
[CrossRef]

Gorjan, M.

M. Gorjan, M. Marincek, and M. Copic, IEEE J. Quantum Electron. 47, 262 (2011)
[CrossRef]

M. Gorjan, M. Marincek, and M. Copic, J. Opt. Soc. Am. B 27, 2784 (2010)
[CrossRef]

Hashida, M.

Hirokane, M.

Hulliger, J.

C. Wyss, W. Lüthy, H. P. Weber, P. Rogin, and J. Hulliger, Opt. Commun. 139, 215 (1997)
[CrossRef]

Jackson, S. D.

S. D. Jackson, Electron. Lett. 45, 830 (2009)
[CrossRef]

M. Pollnau and S. D. Jackson, IEEE J. Quantum Electron. 38, 162 (2002)
[CrossRef]

M. Pollnau and S. D. Jackson, IEEE J. Sel. Top. Quantum Electron. 7, 30 (2001)
[CrossRef]

P. S. Golding, S. D. Jackson, T. A. King, and M. Pollnau, Phys. Rev. B 62, 856 (2000)
[CrossRef]

Jain, R.

Jain, R. K.

King, T. A.

P. S. Golding, S. D. Jackson, T. A. King, and M. Pollnau, Phys. Rev. B 62, 856 (2000)
[CrossRef]

Lüthy, W.

C. Wyss, W. Lüthy, H. P. Weber, P. Rogin, and J. Hulliger, Opt. Commun. 139, 215 (1997)
[CrossRef]

Marincek, M.

M. Gorjan, M. Marincek, and M. Copic, IEEE J. Quantum Electron. 47, 262 (2011)
[CrossRef]

M. Gorjan, M. Marincek, and M. Copic, J. Opt. Soc. Am. B 27, 2784 (2010)
[CrossRef]

Murakami, M.

Pollnau, M.

M. Pollnau and S. D. Jackson, IEEE J. Quantum Electron. 38, 162 (2002)
[CrossRef]

M. Pollnau and S. D. Jackson, IEEE J. Sel. Top. Quantum Electron. 7, 30 (2001)
[CrossRef]

P. S. Golding, S. D. Jackson, T. A. King, and M. Pollnau, Phys. Rev. B 62, 856 (2000)
[CrossRef]

Rogin, P.

C. Wyss, W. Lüthy, H. P. Weber, P. Rogin, and J. Hulliger, Opt. Commun. 139, 215 (1997)
[CrossRef]

Sakabe, S.

Saliminia, A.

Sheng, Y.

Shimizu, S.

Tokita, S.

Vallée, R.

Weber, H. P.

C. Wyss, W. Lüthy, H. P. Weber, P. Rogin, and J. Hulliger, Opt. Commun. 139, 215 (1997)
[CrossRef]

Wyss, C.

C. Wyss, W. Lüthy, H. P. Weber, P. Rogin, and J. Hulliger, Opt. Commun. 139, 215 (1997)
[CrossRef]

Zhu, X.

Appl. Opt. (1)

Electron. Lett. (1)

S. D. Jackson, Electron. Lett. 45, 830 (2009)
[CrossRef]

IEEE J. Quantum Electron. (2)

M. Pollnau and S. D. Jackson, IEEE J. Quantum Electron. 38, 162 (2002)
[CrossRef]

M. Gorjan, M. Marincek, and M. Copic, IEEE J. Quantum Electron. 47, 262 (2011)
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

M. Pollnau and S. D. Jackson, IEEE J. Sel. Top. Quantum Electron. 7, 30 (2001)
[CrossRef]

J. Opt. Soc. Am. B (1)

Opt. Commun. (1)

C. Wyss, W. Lüthy, H. P. Weber, P. Rogin, and J. Hulliger, Opt. Commun. 139, 215 (1997)
[CrossRef]

Opt. Express (1)

Opt. Lett. (6)

Phys. Rev. B (1)

P. S. Golding, S. D. Jackson, T. A. King, and M. Pollnau, Phys. Rev. B 62, 856 (2000)
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Experimental setup of the all-fiber laser at 2825 nm .

Fig. 2
Fig. 2

Laser output power as a function of absorbed pump power. The dotted lines are linear fits of the data with the first and last four data points and indicate the laser slope efficiency at high and low pump powers.

Fig. 3
Fig. 3

Fiber laser output spectra at different launched pump powers. The inset shows the transmission spectrum of the highly reflective FBG.

Fig. 4
Fig. 4

Laser output power as a function of time at four different output powers.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

η = η S η m η L η E = η S η m ln ( 1 T ) ln [ ( 1 T ) ( 1 L ) ] [ 2 b 1 2 b 2 2 W 22 W 11 ] ,

Metrics