Abstract

We demonstrate the successful deployment of an antiresonant ring (ARR) interferometer within a ring optical resonator and its use for absolute optimization of output power. The integration of the ARR interferometer in a folded arm of the ring oscillator provides continuously variable output coupling over broad spectral range and under any operating conditions. We demonstrate the technique using a picosecond optical parametric oscillator (OPO), where we show continuously adjustable output coupling and optimization of the output power for different pump power conditions, from 3.5W to 13.5W. By operating the OPO under an optimized output coupling at 14W of pump power, we obtain >5W of extracted signal power, more than 2.6 times that with a 5% conventional output coupler. We also show that the inclusion of the ARR interferometer has no detrimental effect on the spatial, temporal, and spectral characteristics of OPO output.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Chaitanya Kumar, R. Das, G. K. Samanta, and M. Ebrahim-Zadeh, Appl. Phys. B 102, 31 (2011).
    [CrossRef]
  2. A. Esteban-Martin, O. Kokabee, and M. Ebrahim-Zadeh, Opt. Lett. 35, 2786 (2010).
    [CrossRef] [PubMed]
  3. A. E. Siegman, IEEE J. Quantum Electron. 9, 247 (1973).
    [CrossRef]
  4. A. E. Siegman, IEEE J. Sel. Top. Quantum Electron. 6, 1389 (2000).
    [CrossRef]
  5. W. S. Pelouch, S. Herrera, L. A. Schlie, P. E. Powers, and C. L. Tang, Proc. SPIE 2116, 66 (1994).
    [CrossRef]
  6. O. Kokabee, A. Esteban-Martin, and M. Ebrahim-Zadeh, Opt. Lett. 35, 3210 (2010).
    [CrossRef] [PubMed]

2011 (1)

S. Chaitanya Kumar, R. Das, G. K. Samanta, and M. Ebrahim-Zadeh, Appl. Phys. B 102, 31 (2011).
[CrossRef]

2010 (2)

2000 (1)

A. E. Siegman, IEEE J. Sel. Top. Quantum Electron. 6, 1389 (2000).
[CrossRef]

1994 (1)

W. S. Pelouch, S. Herrera, L. A. Schlie, P. E. Powers, and C. L. Tang, Proc. SPIE 2116, 66 (1994).
[CrossRef]

1973 (1)

A. E. Siegman, IEEE J. Quantum Electron. 9, 247 (1973).
[CrossRef]

Das, R.

S. Chaitanya Kumar, R. Das, G. K. Samanta, and M. Ebrahim-Zadeh, Appl. Phys. B 102, 31 (2011).
[CrossRef]

Ebrahim-Zadeh, M.

Esteban-Martin, A.

Herrera, S.

W. S. Pelouch, S. Herrera, L. A. Schlie, P. E. Powers, and C. L. Tang, Proc. SPIE 2116, 66 (1994).
[CrossRef]

Kokabee, O.

Kumar, S. Chaitanya

S. Chaitanya Kumar, R. Das, G. K. Samanta, and M. Ebrahim-Zadeh, Appl. Phys. B 102, 31 (2011).
[CrossRef]

Pelouch, W. S.

W. S. Pelouch, S. Herrera, L. A. Schlie, P. E. Powers, and C. L. Tang, Proc. SPIE 2116, 66 (1994).
[CrossRef]

Powers, P. E.

W. S. Pelouch, S. Herrera, L. A. Schlie, P. E. Powers, and C. L. Tang, Proc. SPIE 2116, 66 (1994).
[CrossRef]

Samanta, G. K.

S. Chaitanya Kumar, R. Das, G. K. Samanta, and M. Ebrahim-Zadeh, Appl. Phys. B 102, 31 (2011).
[CrossRef]

Schlie, L. A.

W. S. Pelouch, S. Herrera, L. A. Schlie, P. E. Powers, and C. L. Tang, Proc. SPIE 2116, 66 (1994).
[CrossRef]

Siegman, A. E.

A. E. Siegman, IEEE J. Sel. Top. Quantum Electron. 6, 1389 (2000).
[CrossRef]

A. E. Siegman, IEEE J. Quantum Electron. 9, 247 (1973).
[CrossRef]

Tang, C. L.

W. S. Pelouch, S. Herrera, L. A. Schlie, P. E. Powers, and C. L. Tang, Proc. SPIE 2116, 66 (1994).
[CrossRef]

Appl. Phys. B (1)

S. Chaitanya Kumar, R. Das, G. K. Samanta, and M. Ebrahim-Zadeh, Appl. Phys. B 102, 31 (2011).
[CrossRef]

IEEE J. Quantum Electron. (1)

A. E. Siegman, IEEE J. Quantum Electron. 9, 247 (1973).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

A. E. Siegman, IEEE J. Sel. Top. Quantum Electron. 6, 1389 (2000).
[CrossRef]

Opt. Lett. (2)

Proc. SPIE (1)

W. S. Pelouch, S. Herrera, L. A. Schlie, P. E. Powers, and C. L. Tang, Proc. SPIE 2116, 66 (1994).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Configuration of ARR output-coupled synchronously pumped picosecond OPO in a ring cavity. L, lens; PBS, polarizing beam splitter; FI, Faraday isolator.

Fig. 2
Fig. 2

Optimization of signal power at (a)  13.5 W and (b)  3.5 W of pump power.

Fig. 3
Fig. 3

Variation of extracted signal power from the OPO using 5% conventional OC, optimum ARR output coupling along with total power from ARR as a function of the input pump power.

Fig. 4
Fig. 4

Long-term power stability and spatial profile of OPO signal pulses extracted through the ARR OC.

Fig. 5
Fig. 5

Interferometric autocorrelation of OPO signal pulses extracted trough the ARR. Inset: corresponding signal spectrum centered at 1529 nm .

Metrics