Abstract

We developed dual-modality microscope integrating photoacoustic microscopy (PAM) and fluorescence confocal microscopy (FCM) to noninvasively image hemoglobin oxygen saturation (sO2) and oxygen partial pressure (pO2) in vivo in single blood vessels with high spatial resolution. While PAM measures sO2 by imaging hemoglobin optical absorption at two wavelengths, FCM quantifies pO2 using phosphorescence quenching. The variations of sO2 and pO2 values in multiple orders of vessel branches under hyperoxic (100% oxygen) and normoxic (21% oxygen) conditions correlate well with the oxygen–hemoglobin dissociation curve. In addition, the total concentration of hemoglobin is imaged by PAM at an isosbestic wavelength.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Hu and L. V. Wang, J. Biomed. Opt. 15, 011101 (2010).
    [CrossRef] [PubMed]
  2. D. Faber, E. Mik, M. Aalders, and T. van Leeuwen, Opt. Lett. 30, 1015 (2005).
    [CrossRef] [PubMed]
  3. R. D. Shonat, E. S. Wachman, W. Niu, A. P. Koretsky, and D. L. Farkas, Biophys. J. 73, 1223 (1997).
    [CrossRef] [PubMed]
  4. C. Zhang, K. Maslov, and L. Wang, Opt. Lett. 35, 3195 (2010).
    [CrossRef] [PubMed]
  5. L.-W. Lo, C. J. Koch, and D. F. Wilson, Anal. Biochem. 236, 153 (1996).
    [CrossRef] [PubMed]
  6. M. Yaseen, V. Srinivasan, S. Sakadzic, W. Wu, S. Ruvinskaya, S. Vinogradov, and D. Boas, Opt. Express 17, 22341(2009).
    [CrossRef]
  7. A. Estrada, A. Ponticorvo, T. Ford, and A. Dunn, Opt. Lett. 33, 1038 (2008).
    [CrossRef] [PubMed]
  8. Y. Wang, K. Maslov, C. Kim, S. Hu, and L. V. Wang, IEEE Trans. Biomed. Eng. 57, 2576 (2010).
    [CrossRef] [PubMed]
  9. M. Sinaasappel and C. Ince, J. Appl. Physiol. 81, 2297(1996).
    [PubMed]
  10. G. S. Adair, J. Biol. Chem. 63, 529 (1925).
  11. G. R. Kelman, J. Appl. Physiol. 21, 1375 (1966).
    [PubMed]
  12. H. Kobayashi and N. Takizawa, Am. J. Physiol. Heart Circ. Physiol. 270, 1453 (1996).

2010 (3)

S. Hu and L. V. Wang, J. Biomed. Opt. 15, 011101 (2010).
[CrossRef] [PubMed]

Y. Wang, K. Maslov, C. Kim, S. Hu, and L. V. Wang, IEEE Trans. Biomed. Eng. 57, 2576 (2010).
[CrossRef] [PubMed]

C. Zhang, K. Maslov, and L. Wang, Opt. Lett. 35, 3195 (2010).
[CrossRef] [PubMed]

2009 (1)

2008 (1)

2005 (1)

1997 (1)

R. D. Shonat, E. S. Wachman, W. Niu, A. P. Koretsky, and D. L. Farkas, Biophys. J. 73, 1223 (1997).
[CrossRef] [PubMed]

1996 (3)

M. Sinaasappel and C. Ince, J. Appl. Physiol. 81, 2297(1996).
[PubMed]

H. Kobayashi and N. Takizawa, Am. J. Physiol. Heart Circ. Physiol. 270, 1453 (1996).

L.-W. Lo, C. J. Koch, and D. F. Wilson, Anal. Biochem. 236, 153 (1996).
[CrossRef] [PubMed]

1966 (1)

G. R. Kelman, J. Appl. Physiol. 21, 1375 (1966).
[PubMed]

1925 (1)

G. S. Adair, J. Biol. Chem. 63, 529 (1925).

Aalders, M.

Adair, G. S.

G. S. Adair, J. Biol. Chem. 63, 529 (1925).

Boas, D.

Dunn, A.

Estrada, A.

Faber, D.

Farkas, D. L.

R. D. Shonat, E. S. Wachman, W. Niu, A. P. Koretsky, and D. L. Farkas, Biophys. J. 73, 1223 (1997).
[CrossRef] [PubMed]

Ford, T.

Hu, S.

S. Hu and L. V. Wang, J. Biomed. Opt. 15, 011101 (2010).
[CrossRef] [PubMed]

Y. Wang, K. Maslov, C. Kim, S. Hu, and L. V. Wang, IEEE Trans. Biomed. Eng. 57, 2576 (2010).
[CrossRef] [PubMed]

Ince, C.

M. Sinaasappel and C. Ince, J. Appl. Physiol. 81, 2297(1996).
[PubMed]

Kelman, G. R.

G. R. Kelman, J. Appl. Physiol. 21, 1375 (1966).
[PubMed]

Kim, C.

Y. Wang, K. Maslov, C. Kim, S. Hu, and L. V. Wang, IEEE Trans. Biomed. Eng. 57, 2576 (2010).
[CrossRef] [PubMed]

Kobayashi, H.

H. Kobayashi and N. Takizawa, Am. J. Physiol. Heart Circ. Physiol. 270, 1453 (1996).

Koch, C. J.

L.-W. Lo, C. J. Koch, and D. F. Wilson, Anal. Biochem. 236, 153 (1996).
[CrossRef] [PubMed]

Koretsky, A. P.

R. D. Shonat, E. S. Wachman, W. Niu, A. P. Koretsky, and D. L. Farkas, Biophys. J. 73, 1223 (1997).
[CrossRef] [PubMed]

Lo, L.-W.

L.-W. Lo, C. J. Koch, and D. F. Wilson, Anal. Biochem. 236, 153 (1996).
[CrossRef] [PubMed]

Maslov, K.

Y. Wang, K. Maslov, C. Kim, S. Hu, and L. V. Wang, IEEE Trans. Biomed. Eng. 57, 2576 (2010).
[CrossRef] [PubMed]

C. Zhang, K. Maslov, and L. Wang, Opt. Lett. 35, 3195 (2010).
[CrossRef] [PubMed]

Mik, E.

Niu, W.

R. D. Shonat, E. S. Wachman, W. Niu, A. P. Koretsky, and D. L. Farkas, Biophys. J. 73, 1223 (1997).
[CrossRef] [PubMed]

Ponticorvo, A.

Ruvinskaya, S.

Sakadzic, S.

Shonat, R. D.

R. D. Shonat, E. S. Wachman, W. Niu, A. P. Koretsky, and D. L. Farkas, Biophys. J. 73, 1223 (1997).
[CrossRef] [PubMed]

Sinaasappel, M.

M. Sinaasappel and C. Ince, J. Appl. Physiol. 81, 2297(1996).
[PubMed]

Srinivasan, V.

Takizawa, N.

H. Kobayashi and N. Takizawa, Am. J. Physiol. Heart Circ. Physiol. 270, 1453 (1996).

van Leeuwen, T.

Vinogradov, S.

Wachman, E. S.

R. D. Shonat, E. S. Wachman, W. Niu, A. P. Koretsky, and D. L. Farkas, Biophys. J. 73, 1223 (1997).
[CrossRef] [PubMed]

Wang, L.

Wang, L. V.

Y. Wang, K. Maslov, C. Kim, S. Hu, and L. V. Wang, IEEE Trans. Biomed. Eng. 57, 2576 (2010).
[CrossRef] [PubMed]

S. Hu and L. V. Wang, J. Biomed. Opt. 15, 011101 (2010).
[CrossRef] [PubMed]

Wang, Y.

Y. Wang, K. Maslov, C. Kim, S. Hu, and L. V. Wang, IEEE Trans. Biomed. Eng. 57, 2576 (2010).
[CrossRef] [PubMed]

Wilson, D. F.

L.-W. Lo, C. J. Koch, and D. F. Wilson, Anal. Biochem. 236, 153 (1996).
[CrossRef] [PubMed]

Wu, W.

Yaseen, M.

Zhang, C.

Am. J. Physiol. Heart Circ. Physiol. (1)

H. Kobayashi and N. Takizawa, Am. J. Physiol. Heart Circ. Physiol. 270, 1453 (1996).

Anal. Biochem. (1)

L.-W. Lo, C. J. Koch, and D. F. Wilson, Anal. Biochem. 236, 153 (1996).
[CrossRef] [PubMed]

Biophys. J. (1)

R. D. Shonat, E. S. Wachman, W. Niu, A. P. Koretsky, and D. L. Farkas, Biophys. J. 73, 1223 (1997).
[CrossRef] [PubMed]

IEEE Trans. Biomed. Eng. (1)

Y. Wang, K. Maslov, C. Kim, S. Hu, and L. V. Wang, IEEE Trans. Biomed. Eng. 57, 2576 (2010).
[CrossRef] [PubMed]

J. Appl. Physiol. (2)

M. Sinaasappel and C. Ince, J. Appl. Physiol. 81, 2297(1996).
[PubMed]

G. R. Kelman, J. Appl. Physiol. 21, 1375 (1966).
[PubMed]

J. Biol. Chem. (1)

G. S. Adair, J. Biol. Chem. 63, 529 (1925).

J. Biomed. Opt. (1)

S. Hu and L. V. Wang, J. Biomed. Opt. 15, 011101 (2010).
[CrossRef] [PubMed]

Opt. Express (1)

Opt. Lett. (3)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Schematic of the integrated photo acoustic and confocal microscopy setup.

Fig. 2
Fig. 2

Imaging of the ear of a mouse in hyperoxia in vivo. (a) Photoacoustic image of total concentration of hemoglobin acquired at isosbestic 570 nm . (b) Photoacoustic image of sO 2 acquired at 570 and 578 nm . (c) Confocal image of time-integrated phosphorescence excited at 523 nm . Sebaceous glands and blood vessels are separated in the confocal images by integrating the phosphorescence signal (d) before and (e) after 5 µs . (f) Phosphorescence decay curves from two regions of 15 × 15 pixels each in the artery and vein indicated by the arrows in (e). (g) Confocal image of the phosphorescence lifetime. (h) Confocal image of pO 2 : PA, photoacoustic; FL, fluorescence; HbT, total hemoglobin concentration; and τ, phosphorescence lifetime.

Fig. 3
Fig. 3

Photoacoustic and confocal microscopy of pO 2 and sO 2 levels in the ear of a mouse in response to switching from hyperoxia to normoxia. (a) Photoacoustic image of total concentration of hemoglobin acquired at 570 nm . (b) Confocal image of time-integrated phosphorescence in the same region excited at 523 nm . (c) Photoacoustic image of sO 2 and (d) confocal image of pO 2 in hyperoxia. (e) Photoacoustic image of sO 2 and (f) confocal image of pO 2 in normoxia. (g) Skeletons of arteries (Ai) and veins (Vi) shown in (a), where subscript i denotes the segmentation. (h) Plot of sO 2 versus pO 2 values in arteries and veins identified in (g). PA, photoacoustic; FL, fluorescence; and HbT, total hemoglobin concentration.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

τ 1 = τ 0 1 + k q · pO 2 ,
sO 2 = 100 × a 1 + a 2 x 2 + a 3 x 3 + x 4 a 4 + a 5 x + a 6 x 2 + a 7 x 3 + x 4 ,
x = f ( T , pH , pCO 2 ) × pO 2 ,
f = 10 [ 0.024 ( T 37 ) + 0.40 ( pH 7.40 ) 0.06 ( log 10 pCO 2 log 10 40 ) ] .

Metrics