Abstract

We demonstrate a 300μm long silicon photonic crystal (PC) slot waveguide device for on-chip near-infrared absorption spectroscopy, based on the Beer–Lambert law for the detection of methane gas. The device combines slow light in a PC waveguide with high electric field intensity in a low-index 90nm wide slot, which effectively in creases the optical absorption path length. A methane concentration of 100ppm (parts per million) in nitrogen was measured.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. J. Thorpe, K. D. Moll, R. J. Jones, B. Safdi, and J. Ye, Science 311, 1595 (2006).
    [CrossRef] [PubMed]
  2. http://www.tigeroptics.com/.
  3. M. Lackner, Rev. Chem. Eng. 23, 65 (2007).
    [CrossRef]
  4. F. Adler, P. Maslowski, A. Foltynowicz, K. C. Cossel, T. C. Briles, I. Hartl, and J. Ye, Opt. Express 18, 21861 (2010).
    [CrossRef] [PubMed]
  5. http://www.tdlas.com/products/.
  6. N. A. Mortensen and S. S. Xiao, Appl. Phys. Lett. 90, 141108 (2007).
    [CrossRef]
  7. E. Yablonovitch, Phys. Rev. Lett. 58, 2059 (1987).
    [CrossRef] [PubMed]
  8. S. John, Phys. Rev. Lett. 58, 2486 (1987).
    [CrossRef] [PubMed]
  9. S. Chakravarty, P. Bhattacharya, and Z. Mi, IEEE Photon. Technol. Lett. 18, 2665 (2006).
    [CrossRef]
  10. S. Chakravarty, J. Topoľančik, P. Bhattacharya, S. Chakrabarti, Y. Kang, and M. E. Meyerhoff, Opt. Lett. 30, 2578 (2005).
    [CrossRef] [PubMed]
  11. C.-Y. Lin, X. Wang, S. Chakravarty, B.-S. Lee, W.-C. Lai, J. Luo, A. K.-Y. Jen, and R. T. Chen, Appl. Phys. Lett. 97, 093304 (2010).
    [CrossRef]
  12. M. Notomi, Phys. Rev. Lett. 87, 253902 (2001).
    [CrossRef] [PubMed]
  13. X. Chen, W. Jiang, J. Chen, L. Gu, and R. T. Chen, Appl. Phys. Lett. 91, 091111 (2007).
    [CrossRef]
  14. A. Nitkowski, L. Chen, and M. Lipson, Opt. Express 16, 11930 (2008).
    [CrossRef] [PubMed]
  15. W.-C. Lai, S. Chakravarty, X. Wang, C. Lin, and R. T. Chen, Appl. Phys. Lett. 98, 023304 (2011).
    [CrossRef]
  16. X. Wang, S. Chakravarty, B.-S. Lee, C. Lin, and R. T. Chen, Opt. Lett. 34, 3202 (2009).
    [CrossRef] [PubMed]
  17. http://www.cfa.harvard.edu/HITRAN/.
  18. W.-B. Yan, Gases Technol. 1 (4), 21 (2002).
  19. J. T. Robinson, L. Chen, and M. Lipson, Opt. Express 16, 4296 (2008).
    [CrossRef] [PubMed]
  20. N. A. Yebo, P. Lommens, Z. Hens, and R. Baets, Opt. Express 18, 11859 (2010).
    [CrossRef] [PubMed]
  21. A. Karpf and G. N. Rao, Appl. Opt. 49, 1406 (2010).
    [CrossRef] [PubMed]

2011

W.-C. Lai, S. Chakravarty, X. Wang, C. Lin, and R. T. Chen, Appl. Phys. Lett. 98, 023304 (2011).
[CrossRef]

2010

2009

2008

2007

N. A. Mortensen and S. S. Xiao, Appl. Phys. Lett. 90, 141108 (2007).
[CrossRef]

X. Chen, W. Jiang, J. Chen, L. Gu, and R. T. Chen, Appl. Phys. Lett. 91, 091111 (2007).
[CrossRef]

M. Lackner, Rev. Chem. Eng. 23, 65 (2007).
[CrossRef]

2006

S. Chakravarty, P. Bhattacharya, and Z. Mi, IEEE Photon. Technol. Lett. 18, 2665 (2006).
[CrossRef]

M. J. Thorpe, K. D. Moll, R. J. Jones, B. Safdi, and J. Ye, Science 311, 1595 (2006).
[CrossRef] [PubMed]

2005

2002

W.-B. Yan, Gases Technol. 1 (4), 21 (2002).

2001

M. Notomi, Phys. Rev. Lett. 87, 253902 (2001).
[CrossRef] [PubMed]

1987

E. Yablonovitch, Phys. Rev. Lett. 58, 2059 (1987).
[CrossRef] [PubMed]

S. John, Phys. Rev. Lett. 58, 2486 (1987).
[CrossRef] [PubMed]

Adler, F.

Baets, R.

Bhattacharya, P.

Briles, T. C.

Chakrabarti, S.

Chakravarty, S.

W.-C. Lai, S. Chakravarty, X. Wang, C. Lin, and R. T. Chen, Appl. Phys. Lett. 98, 023304 (2011).
[CrossRef]

C.-Y. Lin, X. Wang, S. Chakravarty, B.-S. Lee, W.-C. Lai, J. Luo, A. K.-Y. Jen, and R. T. Chen, Appl. Phys. Lett. 97, 093304 (2010).
[CrossRef]

X. Wang, S. Chakravarty, B.-S. Lee, C. Lin, and R. T. Chen, Opt. Lett. 34, 3202 (2009).
[CrossRef] [PubMed]

S. Chakravarty, P. Bhattacharya, and Z. Mi, IEEE Photon. Technol. Lett. 18, 2665 (2006).
[CrossRef]

S. Chakravarty, J. Topoľančik, P. Bhattacharya, S. Chakrabarti, Y. Kang, and M. E. Meyerhoff, Opt. Lett. 30, 2578 (2005).
[CrossRef] [PubMed]

Chen, J.

X. Chen, W. Jiang, J. Chen, L. Gu, and R. T. Chen, Appl. Phys. Lett. 91, 091111 (2007).
[CrossRef]

Chen, L.

Chen, R. T.

W.-C. Lai, S. Chakravarty, X. Wang, C. Lin, and R. T. Chen, Appl. Phys. Lett. 98, 023304 (2011).
[CrossRef]

C.-Y. Lin, X. Wang, S. Chakravarty, B.-S. Lee, W.-C. Lai, J. Luo, A. K.-Y. Jen, and R. T. Chen, Appl. Phys. Lett. 97, 093304 (2010).
[CrossRef]

X. Wang, S. Chakravarty, B.-S. Lee, C. Lin, and R. T. Chen, Opt. Lett. 34, 3202 (2009).
[CrossRef] [PubMed]

X. Chen, W. Jiang, J. Chen, L. Gu, and R. T. Chen, Appl. Phys. Lett. 91, 091111 (2007).
[CrossRef]

Chen, X.

X. Chen, W. Jiang, J. Chen, L. Gu, and R. T. Chen, Appl. Phys. Lett. 91, 091111 (2007).
[CrossRef]

Cossel, K. C.

Foltynowicz, A.

Gu, L.

X. Chen, W. Jiang, J. Chen, L. Gu, and R. T. Chen, Appl. Phys. Lett. 91, 091111 (2007).
[CrossRef]

Hartl, I.

Hens, Z.

Jen, A. K.-Y.

C.-Y. Lin, X. Wang, S. Chakravarty, B.-S. Lee, W.-C. Lai, J. Luo, A. K.-Y. Jen, and R. T. Chen, Appl. Phys. Lett. 97, 093304 (2010).
[CrossRef]

Jiang, W.

X. Chen, W. Jiang, J. Chen, L. Gu, and R. T. Chen, Appl. Phys. Lett. 91, 091111 (2007).
[CrossRef]

John, S.

S. John, Phys. Rev. Lett. 58, 2486 (1987).
[CrossRef] [PubMed]

Jones, R. J.

M. J. Thorpe, K. D. Moll, R. J. Jones, B. Safdi, and J. Ye, Science 311, 1595 (2006).
[CrossRef] [PubMed]

Kang, Y.

Karpf, A.

Lackner, M.

M. Lackner, Rev. Chem. Eng. 23, 65 (2007).
[CrossRef]

Lai, W.-C.

W.-C. Lai, S. Chakravarty, X. Wang, C. Lin, and R. T. Chen, Appl. Phys. Lett. 98, 023304 (2011).
[CrossRef]

C.-Y. Lin, X. Wang, S. Chakravarty, B.-S. Lee, W.-C. Lai, J. Luo, A. K.-Y. Jen, and R. T. Chen, Appl. Phys. Lett. 97, 093304 (2010).
[CrossRef]

Lee, B.-S.

C.-Y. Lin, X. Wang, S. Chakravarty, B.-S. Lee, W.-C. Lai, J. Luo, A. K.-Y. Jen, and R. T. Chen, Appl. Phys. Lett. 97, 093304 (2010).
[CrossRef]

X. Wang, S. Chakravarty, B.-S. Lee, C. Lin, and R. T. Chen, Opt. Lett. 34, 3202 (2009).
[CrossRef] [PubMed]

Lin, C.

W.-C. Lai, S. Chakravarty, X. Wang, C. Lin, and R. T. Chen, Appl. Phys. Lett. 98, 023304 (2011).
[CrossRef]

X. Wang, S. Chakravarty, B.-S. Lee, C. Lin, and R. T. Chen, Opt. Lett. 34, 3202 (2009).
[CrossRef] [PubMed]

Lin, C.-Y.

C.-Y. Lin, X. Wang, S. Chakravarty, B.-S. Lee, W.-C. Lai, J. Luo, A. K.-Y. Jen, and R. T. Chen, Appl. Phys. Lett. 97, 093304 (2010).
[CrossRef]

Lipson, M.

Lommens, P.

Luo, J.

C.-Y. Lin, X. Wang, S. Chakravarty, B.-S. Lee, W.-C. Lai, J. Luo, A. K.-Y. Jen, and R. T. Chen, Appl. Phys. Lett. 97, 093304 (2010).
[CrossRef]

Maslowski, P.

Meyerhoff, M. E.

Mi, Z.

S. Chakravarty, P. Bhattacharya, and Z. Mi, IEEE Photon. Technol. Lett. 18, 2665 (2006).
[CrossRef]

Moll, K. D.

M. J. Thorpe, K. D. Moll, R. J. Jones, B. Safdi, and J. Ye, Science 311, 1595 (2006).
[CrossRef] [PubMed]

Mortensen, N. A.

N. A. Mortensen and S. S. Xiao, Appl. Phys. Lett. 90, 141108 (2007).
[CrossRef]

Nitkowski, A.

Notomi, M.

M. Notomi, Phys. Rev. Lett. 87, 253902 (2001).
[CrossRef] [PubMed]

Rao, G. N.

Robinson, J. T.

Safdi, B.

M. J. Thorpe, K. D. Moll, R. J. Jones, B. Safdi, and J. Ye, Science 311, 1595 (2006).
[CrossRef] [PubMed]

Thorpe, M. J.

M. J. Thorpe, K. D. Moll, R. J. Jones, B. Safdi, and J. Ye, Science 311, 1595 (2006).
[CrossRef] [PubMed]

Topolancik, J.

Wang, X.

W.-C. Lai, S. Chakravarty, X. Wang, C. Lin, and R. T. Chen, Appl. Phys. Lett. 98, 023304 (2011).
[CrossRef]

C.-Y. Lin, X. Wang, S. Chakravarty, B.-S. Lee, W.-C. Lai, J. Luo, A. K.-Y. Jen, and R. T. Chen, Appl. Phys. Lett. 97, 093304 (2010).
[CrossRef]

X. Wang, S. Chakravarty, B.-S. Lee, C. Lin, and R. T. Chen, Opt. Lett. 34, 3202 (2009).
[CrossRef] [PubMed]

Xiao, S. S.

N. A. Mortensen and S. S. Xiao, Appl. Phys. Lett. 90, 141108 (2007).
[CrossRef]

Yablonovitch, E.

E. Yablonovitch, Phys. Rev. Lett. 58, 2059 (1987).
[CrossRef] [PubMed]

Yan, W.-B.

W.-B. Yan, Gases Technol. 1 (4), 21 (2002).

Ye, J.

Yebo, N. A.

Appl. Opt.

Appl. Phys. Lett.

N. A. Mortensen and S. S. Xiao, Appl. Phys. Lett. 90, 141108 (2007).
[CrossRef]

C.-Y. Lin, X. Wang, S. Chakravarty, B.-S. Lee, W.-C. Lai, J. Luo, A. K.-Y. Jen, and R. T. Chen, Appl. Phys. Lett. 97, 093304 (2010).
[CrossRef]

X. Chen, W. Jiang, J. Chen, L. Gu, and R. T. Chen, Appl. Phys. Lett. 91, 091111 (2007).
[CrossRef]

W.-C. Lai, S. Chakravarty, X. Wang, C. Lin, and R. T. Chen, Appl. Phys. Lett. 98, 023304 (2011).
[CrossRef]

Gases Technol.

W.-B. Yan, Gases Technol. 1 (4), 21 (2002).

IEEE Photon. Technol. Lett.

S. Chakravarty, P. Bhattacharya, and Z. Mi, IEEE Photon. Technol. Lett. 18, 2665 (2006).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Rev. Lett.

M. Notomi, Phys. Rev. Lett. 87, 253902 (2001).
[CrossRef] [PubMed]

E. Yablonovitch, Phys. Rev. Lett. 58, 2059 (1987).
[CrossRef] [PubMed]

S. John, Phys. Rev. Lett. 58, 2486 (1987).
[CrossRef] [PubMed]

Rev. Chem. Eng.

M. Lackner, Rev. Chem. Eng. 23, 65 (2007).
[CrossRef]

Science

M. J. Thorpe, K. D. Moll, R. J. Jones, B. Safdi, and J. Ye, Science 311, 1595 (2006).
[CrossRef] [PubMed]

Other

http://www.tigeroptics.com/.

http://www.tdlas.com/products/.

http://www.cfa.harvard.edu/HITRAN/.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) Schematic of the PC slot waveguide device showing different regions: a denotes the lattice constant. (b) Dispersion diagram of PC slot waveguide showing different modes. Insets, mode profiles of modes 1, 2, and 3 across axis A A in (a). Electric field enhancement magnitude as a function of position for mode 3 across axis A A is shown.

Fig. 2
Fig. 2

SEM image of fabricated W1.3 PC slot waveguide device, showing input mode converter, input group index taper, and etched PC pattern. Insets, distance between air holes on two sides of the slot at the beginning and the end of the group index taper.

Fig. 3
Fig. 3

(left axis) Group index versus wavelength as designed in simulations with the band edge at 1668.5 nm . (right axis) Experimental transmission spectrum (without analyte), showing the band edge shifted in fabricated device to 1670 nm .

Fig. 4
Fig. 4

(right axis) The theoretical absorbance spectrum of methane obtained from [17] is shown by the dotted scatterplot. (left axis) Experimental absorbance of methane at various concentrations. The red dashed curve is a smoothed trace of the spectrum at 750 ppm . Inset, peak absorbance magnitude at 1665.5 nm versus concentration.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

I = I 0 × exp ( γ α L ) ,
γ = f × c / n v g ,
N min = ( d I I 0 ) / S ( ν ) L ,

Metrics