Abstract

We report on the first diode-pumped laser operation of thulium-doped Lu2O3. With a very compact setup an output power of 75W and slope efficiencies of around 40% with respect to the incident pump power were achieved at room temperature. Free running laser operation was observed at wavelengths of 2065nm and 1965nm. With a birefringent filter the wavelength could continuously be tuned from 1922nm to 2134nm. The thermal conductivity of Tm:Lu2O3 was measured for different dopant concentrations and is compared to the one of thulium-doped YAG.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Scholle, S. Lamrini, P. Koopmann, and P. Fuhrberg, Frontiers in Guided Wave Optics and Optoelectronics(InTech, 2010).
  2. T. Y. Fan, G. Huber, and R. L. Byer, IEEE J. Quantum Electron. 24, 924 (1988).
    [CrossRef]
  3. V. Peters, A. Bolz, K. Petermann, and G. Huber, J. Cryst. Growth 237–239, 879 (2002).
    [CrossRef]
  4. P. Koopmann, R. Peters, K. Petermann, and G. Huber, Appl. Phys. B 102, 19 (2011).
    [CrossRef]
  5. R. Peters, C. Kränkel, K. Petermann, and G. Huber, J. Cryst. Growth 310, 1934 (2008).
    [CrossRef]
  6. P. G. Klemens, Phys. Rev. 119, 507 (1960).
    [CrossRef]
  7. J. Morikawa and T. Hashimoto, Jpn. J. Appl. Phys. 37, L1484 (1998).
    [CrossRef]
  8. A. Schmidt, U. Griebner, V. Petrov, S. Y. Choi, B. ChoWon, D.-I. Yeom, F. Rotermund, P. Koopmann, K. Petermann, G. Huber, and P. Fuhrberg, in Europhoton Conference (2010), paper TuC3.

2011 (1)

P. Koopmann, R. Peters, K. Petermann, and G. Huber, Appl. Phys. B 102, 19 (2011).
[CrossRef]

2008 (1)

R. Peters, C. Kränkel, K. Petermann, and G. Huber, J. Cryst. Growth 310, 1934 (2008).
[CrossRef]

2002 (1)

V. Peters, A. Bolz, K. Petermann, and G. Huber, J. Cryst. Growth 237–239, 879 (2002).
[CrossRef]

1998 (1)

J. Morikawa and T. Hashimoto, Jpn. J. Appl. Phys. 37, L1484 (1998).
[CrossRef]

1988 (1)

T. Y. Fan, G. Huber, and R. L. Byer, IEEE J. Quantum Electron. 24, 924 (1988).
[CrossRef]

1960 (1)

P. G. Klemens, Phys. Rev. 119, 507 (1960).
[CrossRef]

Bolz, A.

V. Peters, A. Bolz, K. Petermann, and G. Huber, J. Cryst. Growth 237–239, 879 (2002).
[CrossRef]

Byer, R. L.

T. Y. Fan, G. Huber, and R. L. Byer, IEEE J. Quantum Electron. 24, 924 (1988).
[CrossRef]

Choi, S. Y.

A. Schmidt, U. Griebner, V. Petrov, S. Y. Choi, B. ChoWon, D.-I. Yeom, F. Rotermund, P. Koopmann, K. Petermann, G. Huber, and P. Fuhrberg, in Europhoton Conference (2010), paper TuC3.

ChoWon, B.

A. Schmidt, U. Griebner, V. Petrov, S. Y. Choi, B. ChoWon, D.-I. Yeom, F. Rotermund, P. Koopmann, K. Petermann, G. Huber, and P. Fuhrberg, in Europhoton Conference (2010), paper TuC3.

Fan, T. Y.

T. Y. Fan, G. Huber, and R. L. Byer, IEEE J. Quantum Electron. 24, 924 (1988).
[CrossRef]

Fuhrberg, P.

K. Scholle, S. Lamrini, P. Koopmann, and P. Fuhrberg, Frontiers in Guided Wave Optics and Optoelectronics(InTech, 2010).

A. Schmidt, U. Griebner, V. Petrov, S. Y. Choi, B. ChoWon, D.-I. Yeom, F. Rotermund, P. Koopmann, K. Petermann, G. Huber, and P. Fuhrberg, in Europhoton Conference (2010), paper TuC3.

Griebner, U.

A. Schmidt, U. Griebner, V. Petrov, S. Y. Choi, B. ChoWon, D.-I. Yeom, F. Rotermund, P. Koopmann, K. Petermann, G. Huber, and P. Fuhrberg, in Europhoton Conference (2010), paper TuC3.

Hashimoto, T.

J. Morikawa and T. Hashimoto, Jpn. J. Appl. Phys. 37, L1484 (1998).
[CrossRef]

Huber, G.

P. Koopmann, R. Peters, K. Petermann, and G. Huber, Appl. Phys. B 102, 19 (2011).
[CrossRef]

R. Peters, C. Kränkel, K. Petermann, and G. Huber, J. Cryst. Growth 310, 1934 (2008).
[CrossRef]

V. Peters, A. Bolz, K. Petermann, and G. Huber, J. Cryst. Growth 237–239, 879 (2002).
[CrossRef]

T. Y. Fan, G. Huber, and R. L. Byer, IEEE J. Quantum Electron. 24, 924 (1988).
[CrossRef]

A. Schmidt, U. Griebner, V. Petrov, S. Y. Choi, B. ChoWon, D.-I. Yeom, F. Rotermund, P. Koopmann, K. Petermann, G. Huber, and P. Fuhrberg, in Europhoton Conference (2010), paper TuC3.

Klemens, P. G.

P. G. Klemens, Phys. Rev. 119, 507 (1960).
[CrossRef]

Koopmann, P.

P. Koopmann, R. Peters, K. Petermann, and G. Huber, Appl. Phys. B 102, 19 (2011).
[CrossRef]

K. Scholle, S. Lamrini, P. Koopmann, and P. Fuhrberg, Frontiers in Guided Wave Optics and Optoelectronics(InTech, 2010).

A. Schmidt, U. Griebner, V. Petrov, S. Y. Choi, B. ChoWon, D.-I. Yeom, F. Rotermund, P. Koopmann, K. Petermann, G. Huber, and P. Fuhrberg, in Europhoton Conference (2010), paper TuC3.

Kränkel, C.

R. Peters, C. Kränkel, K. Petermann, and G. Huber, J. Cryst. Growth 310, 1934 (2008).
[CrossRef]

Lamrini, S.

K. Scholle, S. Lamrini, P. Koopmann, and P. Fuhrberg, Frontiers in Guided Wave Optics and Optoelectronics(InTech, 2010).

Morikawa, J.

J. Morikawa and T. Hashimoto, Jpn. J. Appl. Phys. 37, L1484 (1998).
[CrossRef]

Petermann, K.

P. Koopmann, R. Peters, K. Petermann, and G. Huber, Appl. Phys. B 102, 19 (2011).
[CrossRef]

R. Peters, C. Kränkel, K. Petermann, and G. Huber, J. Cryst. Growth 310, 1934 (2008).
[CrossRef]

V. Peters, A. Bolz, K. Petermann, and G. Huber, J. Cryst. Growth 237–239, 879 (2002).
[CrossRef]

A. Schmidt, U. Griebner, V. Petrov, S. Y. Choi, B. ChoWon, D.-I. Yeom, F. Rotermund, P. Koopmann, K. Petermann, G. Huber, and P. Fuhrberg, in Europhoton Conference (2010), paper TuC3.

Peters, R.

P. Koopmann, R. Peters, K. Petermann, and G. Huber, Appl. Phys. B 102, 19 (2011).
[CrossRef]

R. Peters, C. Kränkel, K. Petermann, and G. Huber, J. Cryst. Growth 310, 1934 (2008).
[CrossRef]

Peters, V.

V. Peters, A. Bolz, K. Petermann, and G. Huber, J. Cryst. Growth 237–239, 879 (2002).
[CrossRef]

Petrov, V.

A. Schmidt, U. Griebner, V. Petrov, S. Y. Choi, B. ChoWon, D.-I. Yeom, F. Rotermund, P. Koopmann, K. Petermann, G. Huber, and P. Fuhrberg, in Europhoton Conference (2010), paper TuC3.

Rotermund, F.

A. Schmidt, U. Griebner, V. Petrov, S. Y. Choi, B. ChoWon, D.-I. Yeom, F. Rotermund, P. Koopmann, K. Petermann, G. Huber, and P. Fuhrberg, in Europhoton Conference (2010), paper TuC3.

Schmidt, A.

A. Schmidt, U. Griebner, V. Petrov, S. Y. Choi, B. ChoWon, D.-I. Yeom, F. Rotermund, P. Koopmann, K. Petermann, G. Huber, and P. Fuhrberg, in Europhoton Conference (2010), paper TuC3.

Scholle, K.

K. Scholle, S. Lamrini, P. Koopmann, and P. Fuhrberg, Frontiers in Guided Wave Optics and Optoelectronics(InTech, 2010).

Yeom, D.-I.

A. Schmidt, U. Griebner, V. Petrov, S. Y. Choi, B. ChoWon, D.-I. Yeom, F. Rotermund, P. Koopmann, K. Petermann, G. Huber, and P. Fuhrberg, in Europhoton Conference (2010), paper TuC3.

Appl. Phys. B (1)

P. Koopmann, R. Peters, K. Petermann, and G. Huber, Appl. Phys. B 102, 19 (2011).
[CrossRef]

IEEE J. Quantum Electron. (1)

T. Y. Fan, G. Huber, and R. L. Byer, IEEE J. Quantum Electron. 24, 924 (1988).
[CrossRef]

J. Cryst. Growth (2)

V. Peters, A. Bolz, K. Petermann, and G. Huber, J. Cryst. Growth 237–239, 879 (2002).
[CrossRef]

R. Peters, C. Kränkel, K. Petermann, and G. Huber, J. Cryst. Growth 310, 1934 (2008).
[CrossRef]

Jpn. J. Appl. Phys. (1)

J. Morikawa and T. Hashimoto, Jpn. J. Appl. Phys. 37, L1484 (1998).
[CrossRef]

Phys. Rev. (1)

P. G. Klemens, Phys. Rev. 119, 507 (1960).
[CrossRef]

Other (2)

A. Schmidt, U. Griebner, V. Petrov, S. Y. Choi, B. ChoWon, D.-I. Yeom, F. Rotermund, P. Koopmann, K. Petermann, G. Huber, and P. Fuhrberg, in Europhoton Conference (2010), paper TuC3.

K. Scholle, S. Lamrini, P. Koopmann, and P. Fuhrberg, Frontiers in Guided Wave Optics and Optoelectronics(InTech, 2010).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Thermal conductivity of Tm : Lu 2 O 3 and Tm:YAG for different dopant concentrations. Note that the abscissa is given in 10 20 cm 3 due to the different cation densities of Lu 2 O 3 and YAG.

Fig. 2
Fig. 2

Room temperature absorption spectrum of Tm : Lu 2 O 3 and calculated effective absorption spectrum of the laser diode radiation.

Fig. 3
Fig. 3

Gain spectrum of Tm : Lu 2 O 3 for different inversions β.

Fig. 4
Fig. 4

Resonator setup of the Tm ( 1 % ) : Lu 2 O 3 laser. The resonator length was 17 mm .

Fig. 5
Fig. 5

Input–output curves of the Tm ( 1 % ) : Lu 2 O 3 laser ( = 2.5 mm ) for different output coupling transmissions.

Fig. 6
Fig. 6

Input–output curve of the Tm ( 1 % ) : Lu 2 O 3 laser ( = 3 mm ) with T OC = 7 % and two polarization-coupled laser diodes as the pump source.

Fig. 7
Fig. 7

Tuning curve of the Tm ( 1 % ) : Lu 2 O 3 laser for T OC = 0.8 % .

Metrics