Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

A transparent metamaterial to manipulate electromagnetic wave polarizations

Not Accessible

Your library or personal account may give you access

Abstract

We design an anisotropic ultrathin metamaterial to allow perfect transmissions of electromagnetic (EM) waves for two incident polarizations within a common frequency interval. The transparencies are governed by different mechanisms, resulting in significant differences in transmission phase changes for two polarizations. The system can thus manipulate EM wave polarizations efficiently in transmission geometry, including polarization conversion and rotation. Microwave experiments performed on realistic samples are in excellent agreement with numerical simulations.

© 2011 Optical Society of America

Full Article  |  PDF Article
More Like This
Polarization manipulation based on electromagnetically induced transparency-like (EIT-like) effect

Lei Zhu, Fan-Yi Meng, Liang Dong, Jia-Hui Fu, Fang Zhang, and Qun Wu
Opt. Express 21(26) 32099-32110 (2013)

Analog electromagnetically induced transparency for circularly polarized wave using three-dimensional chiral metamaterials

Hai Lin, Dong Yang, Song Han, Yangjie Liu, and Helin Yang
Opt. Express 24(26) 30068-30078 (2016)

Manipulating wave polarization by twisted plasmonic metamaterials

Xingchen Liu, Yiqun Xu, Zheng Zhu, Shengwu Yu, Chunying Guan, and Jinhui Shi
Opt. Mater. Express 4(5) 1003-1010 (2014)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (5)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.