Abstract

We design an anisotropic ultrathin metamaterial to allow perfect transmissions of electromagnetic (EM) waves for two incident polarizations within a common frequency interval. The transparencies are governed by different mechanisms, resulting in significant differences in transmission phase changes for two polarizations. The system can thus manipulate EM wave polarizations efficiently in transmission geometry, including polarization conversion and rotation. Microwave experiments performed on realistic samples are in excellent agreement with numerical simulations.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Born and E. Wolf, Principles of Optics (Cambridge University Press, 1999).
  2. B. Z. Katsenelenbaum, High-Frequency Electrodynamics (Wiley-VCH, 2006).
    [CrossRef]
  3. R. Guenther, Modern Optics (Wiley, 1990).
  4. J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, Phys. Rev. Lett. 76, 4773 (1996).
    [CrossRef] [PubMed]
  5. J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, IEEE Trans. Microwave Theory Tech. 47, 2075 (1999).
    [CrossRef]
  6. D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, Phys. Rev. Lett. 84, 4184 (2000).
    [CrossRef] [PubMed]
  7. J. Hao, Y. Yuan, L. Ran, T. Jiang, J. A. Kong, C. T. Chan, and L. Zhou, Phys. Rev. Lett. 99, 063908 (2007).
    [CrossRef] [PubMed]
  8. M. Beruete, M. Navarro-Cía, M. Sorolla, and I. Campillo, J. Appl. Phys. 103, 053102 (2008).
    [CrossRef]
  9. T. Q. Li, H. Liu, T. Li, S. M. Wang, F. M. Wang, R. X. Wu, P. Chen, S. N. Zhu, and X. Zhang, Appl. Phys. Lett. 92, 131111 (2008).
    [CrossRef]
  10. T. Li, H. Liu, S. M. Wang, X. G. Yin, F. M. Wang, S. N. Zhu, and X. Zhang, Appl. Phys. Lett. 93, 021110 (2008).
    [CrossRef]
  11. J. Y. Chin, M. Z. Lu, and T. J. Cui, Appl. Phys. Lett. 93, 251903 (2008).
    [CrossRef]
  12. Y. Ye and S. He, Appl. Phys. Lett. 96, 203501 (2010).
    [CrossRef]
  13. L. Zhou, W. Wen, C. T. Chan, and P. Sheng, Phys. Rev. Lett. 94, 243905 (2005).
    [CrossRef]
  14. COMSOL Multiphysics 3.5, developed by COMSOL (network license 2008).
  15. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, Nature 391, 667 (1998).
    [CrossRef]
  16. I. R. Hooper and J. R. Sambles, Phys. Rev. B 70, 045421(2004).
    [CrossRef]
  17. C. A. M. Butler, J. Parsons, J. R. Sambles, A. P. Hibbins, and P. A. Hobson, Appl. Phys. Lett. 95, 174101 (2009).
    [CrossRef]
  18. S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).
  19. Two SPP branches exist on the B layer, exhibiting odd and even symmetries. Here we only plot the even-mode SPP dispersion, since the other branch is at a higher frequency range.
  20. A. M. Dykhne, A. K. Sarychev, and V. M. Shalaev, Phys. Rev. B 67, 195402 (2003).
    [CrossRef]

2010 (1)

Y. Ye and S. He, Appl. Phys. Lett. 96, 203501 (2010).
[CrossRef]

2009 (1)

C. A. M. Butler, J. Parsons, J. R. Sambles, A. P. Hibbins, and P. A. Hobson, Appl. Phys. Lett. 95, 174101 (2009).
[CrossRef]

2008 (4)

M. Beruete, M. Navarro-Cía, M. Sorolla, and I. Campillo, J. Appl. Phys. 103, 053102 (2008).
[CrossRef]

T. Q. Li, H. Liu, T. Li, S. M. Wang, F. M. Wang, R. X. Wu, P. Chen, S. N. Zhu, and X. Zhang, Appl. Phys. Lett. 92, 131111 (2008).
[CrossRef]

T. Li, H. Liu, S. M. Wang, X. G. Yin, F. M. Wang, S. N. Zhu, and X. Zhang, Appl. Phys. Lett. 93, 021110 (2008).
[CrossRef]

J. Y. Chin, M. Z. Lu, and T. J. Cui, Appl. Phys. Lett. 93, 251903 (2008).
[CrossRef]

2007 (1)

J. Hao, Y. Yuan, L. Ran, T. Jiang, J. A. Kong, C. T. Chan, and L. Zhou, Phys. Rev. Lett. 99, 063908 (2007).
[CrossRef] [PubMed]

2005 (1)

L. Zhou, W. Wen, C. T. Chan, and P. Sheng, Phys. Rev. Lett. 94, 243905 (2005).
[CrossRef]

2004 (1)

I. R. Hooper and J. R. Sambles, Phys. Rev. B 70, 045421(2004).
[CrossRef]

2003 (1)

A. M. Dykhne, A. K. Sarychev, and V. M. Shalaev, Phys. Rev. B 67, 195402 (2003).
[CrossRef]

2000 (1)

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, Phys. Rev. Lett. 84, 4184 (2000).
[CrossRef] [PubMed]

1999 (1)

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, IEEE Trans. Microwave Theory Tech. 47, 2075 (1999).
[CrossRef]

1998 (1)

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, Nature 391, 667 (1998).
[CrossRef]

1996 (1)

J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, Phys. Rev. Lett. 76, 4773 (1996).
[CrossRef] [PubMed]

Beruete, M.

M. Beruete, M. Navarro-Cía, M. Sorolla, and I. Campillo, J. Appl. Phys. 103, 053102 (2008).
[CrossRef]

Born, M.

M. Born and E. Wolf, Principles of Optics (Cambridge University Press, 1999).

Butler, C. A. M.

C. A. M. Butler, J. Parsons, J. R. Sambles, A. P. Hibbins, and P. A. Hobson, Appl. Phys. Lett. 95, 174101 (2009).
[CrossRef]

Campillo, I.

M. Beruete, M. Navarro-Cía, M. Sorolla, and I. Campillo, J. Appl. Phys. 103, 053102 (2008).
[CrossRef]

Chan, C. T.

J. Hao, Y. Yuan, L. Ran, T. Jiang, J. A. Kong, C. T. Chan, and L. Zhou, Phys. Rev. Lett. 99, 063908 (2007).
[CrossRef] [PubMed]

L. Zhou, W. Wen, C. T. Chan, and P. Sheng, Phys. Rev. Lett. 94, 243905 (2005).
[CrossRef]

Chen, P.

T. Q. Li, H. Liu, T. Li, S. M. Wang, F. M. Wang, R. X. Wu, P. Chen, S. N. Zhu, and X. Zhang, Appl. Phys. Lett. 92, 131111 (2008).
[CrossRef]

Chin, J. Y.

J. Y. Chin, M. Z. Lu, and T. J. Cui, Appl. Phys. Lett. 93, 251903 (2008).
[CrossRef]

Cui, T. J.

J. Y. Chin, M. Z. Lu, and T. J. Cui, Appl. Phys. Lett. 93, 251903 (2008).
[CrossRef]

Dykhne, A. M.

A. M. Dykhne, A. K. Sarychev, and V. M. Shalaev, Phys. Rev. B 67, 195402 (2003).
[CrossRef]

Ebbesen, T. W.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, Nature 391, 667 (1998).
[CrossRef]

Ghaemi, H. F.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, Nature 391, 667 (1998).
[CrossRef]

Guenther, R.

R. Guenther, Modern Optics (Wiley, 1990).

Hao, J.

J. Hao, Y. Yuan, L. Ran, T. Jiang, J. A. Kong, C. T. Chan, and L. Zhou, Phys. Rev. Lett. 99, 063908 (2007).
[CrossRef] [PubMed]

He, S.

Y. Ye and S. He, Appl. Phys. Lett. 96, 203501 (2010).
[CrossRef]

Hibbins, A. P.

C. A. M. Butler, J. Parsons, J. R. Sambles, A. P. Hibbins, and P. A. Hobson, Appl. Phys. Lett. 95, 174101 (2009).
[CrossRef]

Hobson, P. A.

C. A. M. Butler, J. Parsons, J. R. Sambles, A. P. Hibbins, and P. A. Hobson, Appl. Phys. Lett. 95, 174101 (2009).
[CrossRef]

Holden, A. J.

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, IEEE Trans. Microwave Theory Tech. 47, 2075 (1999).
[CrossRef]

J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, Phys. Rev. Lett. 76, 4773 (1996).
[CrossRef] [PubMed]

Hooper, I. R.

I. R. Hooper and J. R. Sambles, Phys. Rev. B 70, 045421(2004).
[CrossRef]

Jiang, T.

J. Hao, Y. Yuan, L. Ran, T. Jiang, J. A. Kong, C. T. Chan, and L. Zhou, Phys. Rev. Lett. 99, 063908 (2007).
[CrossRef] [PubMed]

Katsenelenbaum, B. Z.

B. Z. Katsenelenbaum, High-Frequency Electrodynamics (Wiley-VCH, 2006).
[CrossRef]

Kong, J. A.

J. Hao, Y. Yuan, L. Ran, T. Jiang, J. A. Kong, C. T. Chan, and L. Zhou, Phys. Rev. Lett. 99, 063908 (2007).
[CrossRef] [PubMed]

Lezec, H. J.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, Nature 391, 667 (1998).
[CrossRef]

Li, T.

T. Li, H. Liu, S. M. Wang, X. G. Yin, F. M. Wang, S. N. Zhu, and X. Zhang, Appl. Phys. Lett. 93, 021110 (2008).
[CrossRef]

T. Q. Li, H. Liu, T. Li, S. M. Wang, F. M. Wang, R. X. Wu, P. Chen, S. N. Zhu, and X. Zhang, Appl. Phys. Lett. 92, 131111 (2008).
[CrossRef]

Li, T. Q.

T. Q. Li, H. Liu, T. Li, S. M. Wang, F. M. Wang, R. X. Wu, P. Chen, S. N. Zhu, and X. Zhang, Appl. Phys. Lett. 92, 131111 (2008).
[CrossRef]

Liu, H.

T. Q. Li, H. Liu, T. Li, S. M. Wang, F. M. Wang, R. X. Wu, P. Chen, S. N. Zhu, and X. Zhang, Appl. Phys. Lett. 92, 131111 (2008).
[CrossRef]

T. Li, H. Liu, S. M. Wang, X. G. Yin, F. M. Wang, S. N. Zhu, and X. Zhang, Appl. Phys. Lett. 93, 021110 (2008).
[CrossRef]

Lu, M. Z.

J. Y. Chin, M. Z. Lu, and T. J. Cui, Appl. Phys. Lett. 93, 251903 (2008).
[CrossRef]

Maier, S. A.

S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).

Navarro-Cía, M.

M. Beruete, M. Navarro-Cía, M. Sorolla, and I. Campillo, J. Appl. Phys. 103, 053102 (2008).
[CrossRef]

Nemat-Nasser, S. C.

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, Phys. Rev. Lett. 84, 4184 (2000).
[CrossRef] [PubMed]

Padilla, W. J.

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, Phys. Rev. Lett. 84, 4184 (2000).
[CrossRef] [PubMed]

Parsons, J.

C. A. M. Butler, J. Parsons, J. R. Sambles, A. P. Hibbins, and P. A. Hobson, Appl. Phys. Lett. 95, 174101 (2009).
[CrossRef]

Pendry, J. B.

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, IEEE Trans. Microwave Theory Tech. 47, 2075 (1999).
[CrossRef]

J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, Phys. Rev. Lett. 76, 4773 (1996).
[CrossRef] [PubMed]

Ran, L.

J. Hao, Y. Yuan, L. Ran, T. Jiang, J. A. Kong, C. T. Chan, and L. Zhou, Phys. Rev. Lett. 99, 063908 (2007).
[CrossRef] [PubMed]

Robbins, D. J.

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, IEEE Trans. Microwave Theory Tech. 47, 2075 (1999).
[CrossRef]

Sambles, J. R.

C. A. M. Butler, J. Parsons, J. R. Sambles, A. P. Hibbins, and P. A. Hobson, Appl. Phys. Lett. 95, 174101 (2009).
[CrossRef]

I. R. Hooper and J. R. Sambles, Phys. Rev. B 70, 045421(2004).
[CrossRef]

Sarychev, A. K.

A. M. Dykhne, A. K. Sarychev, and V. M. Shalaev, Phys. Rev. B 67, 195402 (2003).
[CrossRef]

Schultz, S.

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, Phys. Rev. Lett. 84, 4184 (2000).
[CrossRef] [PubMed]

Shalaev, V. M.

A. M. Dykhne, A. K. Sarychev, and V. M. Shalaev, Phys. Rev. B 67, 195402 (2003).
[CrossRef]

Sheng, P.

L. Zhou, W. Wen, C. T. Chan, and P. Sheng, Phys. Rev. Lett. 94, 243905 (2005).
[CrossRef]

Smith, D. R.

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, Phys. Rev. Lett. 84, 4184 (2000).
[CrossRef] [PubMed]

Sorolla, M.

M. Beruete, M. Navarro-Cía, M. Sorolla, and I. Campillo, J. Appl. Phys. 103, 053102 (2008).
[CrossRef]

Stewart, W. J.

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, IEEE Trans. Microwave Theory Tech. 47, 2075 (1999).
[CrossRef]

J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, Phys. Rev. Lett. 76, 4773 (1996).
[CrossRef] [PubMed]

Thio, T.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, Nature 391, 667 (1998).
[CrossRef]

Vier, D. C.

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, Phys. Rev. Lett. 84, 4184 (2000).
[CrossRef] [PubMed]

Wang, F. M.

T. Q. Li, H. Liu, T. Li, S. M. Wang, F. M. Wang, R. X. Wu, P. Chen, S. N. Zhu, and X. Zhang, Appl. Phys. Lett. 92, 131111 (2008).
[CrossRef]

T. Li, H. Liu, S. M. Wang, X. G. Yin, F. M. Wang, S. N. Zhu, and X. Zhang, Appl. Phys. Lett. 93, 021110 (2008).
[CrossRef]

Wang, S. M.

T. Li, H. Liu, S. M. Wang, X. G. Yin, F. M. Wang, S. N. Zhu, and X. Zhang, Appl. Phys. Lett. 93, 021110 (2008).
[CrossRef]

T. Q. Li, H. Liu, T. Li, S. M. Wang, F. M. Wang, R. X. Wu, P. Chen, S. N. Zhu, and X. Zhang, Appl. Phys. Lett. 92, 131111 (2008).
[CrossRef]

Wen, W.

L. Zhou, W. Wen, C. T. Chan, and P. Sheng, Phys. Rev. Lett. 94, 243905 (2005).
[CrossRef]

Wolf, E.

M. Born and E. Wolf, Principles of Optics (Cambridge University Press, 1999).

Wolff, P. A.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, Nature 391, 667 (1998).
[CrossRef]

Wu, R. X.

T. Q. Li, H. Liu, T. Li, S. M. Wang, F. M. Wang, R. X. Wu, P. Chen, S. N. Zhu, and X. Zhang, Appl. Phys. Lett. 92, 131111 (2008).
[CrossRef]

Ye, Y.

Y. Ye and S. He, Appl. Phys. Lett. 96, 203501 (2010).
[CrossRef]

Yin, X. G.

T. Li, H. Liu, S. M. Wang, X. G. Yin, F. M. Wang, S. N. Zhu, and X. Zhang, Appl. Phys. Lett. 93, 021110 (2008).
[CrossRef]

Youngs, I.

J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, Phys. Rev. Lett. 76, 4773 (1996).
[CrossRef] [PubMed]

Yuan, Y.

J. Hao, Y. Yuan, L. Ran, T. Jiang, J. A. Kong, C. T. Chan, and L. Zhou, Phys. Rev. Lett. 99, 063908 (2007).
[CrossRef] [PubMed]

Zhang, X.

T. Q. Li, H. Liu, T. Li, S. M. Wang, F. M. Wang, R. X. Wu, P. Chen, S. N. Zhu, and X. Zhang, Appl. Phys. Lett. 92, 131111 (2008).
[CrossRef]

T. Li, H. Liu, S. M. Wang, X. G. Yin, F. M. Wang, S. N. Zhu, and X. Zhang, Appl. Phys. Lett. 93, 021110 (2008).
[CrossRef]

Zhou, L.

J. Hao, Y. Yuan, L. Ran, T. Jiang, J. A. Kong, C. T. Chan, and L. Zhou, Phys. Rev. Lett. 99, 063908 (2007).
[CrossRef] [PubMed]

L. Zhou, W. Wen, C. T. Chan, and P. Sheng, Phys. Rev. Lett. 94, 243905 (2005).
[CrossRef]

Zhu, S. N.

T. Li, H. Liu, S. M. Wang, X. G. Yin, F. M. Wang, S. N. Zhu, and X. Zhang, Appl. Phys. Lett. 93, 021110 (2008).
[CrossRef]

T. Q. Li, H. Liu, T. Li, S. M. Wang, F. M. Wang, R. X. Wu, P. Chen, S. N. Zhu, and X. Zhang, Appl. Phys. Lett. 92, 131111 (2008).
[CrossRef]

Appl. Phys. Lett. (5)

T. Q. Li, H. Liu, T. Li, S. M. Wang, F. M. Wang, R. X. Wu, P. Chen, S. N. Zhu, and X. Zhang, Appl. Phys. Lett. 92, 131111 (2008).
[CrossRef]

T. Li, H. Liu, S. M. Wang, X. G. Yin, F. M. Wang, S. N. Zhu, and X. Zhang, Appl. Phys. Lett. 93, 021110 (2008).
[CrossRef]

J. Y. Chin, M. Z. Lu, and T. J. Cui, Appl. Phys. Lett. 93, 251903 (2008).
[CrossRef]

Y. Ye and S. He, Appl. Phys. Lett. 96, 203501 (2010).
[CrossRef]

C. A. M. Butler, J. Parsons, J. R. Sambles, A. P. Hibbins, and P. A. Hobson, Appl. Phys. Lett. 95, 174101 (2009).
[CrossRef]

IEEE Trans. Microwave Theory Tech. (1)

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, IEEE Trans. Microwave Theory Tech. 47, 2075 (1999).
[CrossRef]

J. Appl. Phys. (1)

M. Beruete, M. Navarro-Cía, M. Sorolla, and I. Campillo, J. Appl. Phys. 103, 053102 (2008).
[CrossRef]

Nature (1)

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, Nature 391, 667 (1998).
[CrossRef]

Phys. Rev. B (2)

I. R. Hooper and J. R. Sambles, Phys. Rev. B 70, 045421(2004).
[CrossRef]

A. M. Dykhne, A. K. Sarychev, and V. M. Shalaev, Phys. Rev. B 67, 195402 (2003).
[CrossRef]

Phys. Rev. Lett. (4)

J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, Phys. Rev. Lett. 76, 4773 (1996).
[CrossRef] [PubMed]

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, Phys. Rev. Lett. 84, 4184 (2000).
[CrossRef] [PubMed]

J. Hao, Y. Yuan, L. Ran, T. Jiang, J. A. Kong, C. T. Chan, and L. Zhou, Phys. Rev. Lett. 99, 063908 (2007).
[CrossRef] [PubMed]

L. Zhou, W. Wen, C. T. Chan, and P. Sheng, Phys. Rev. Lett. 94, 243905 (2005).
[CrossRef]

Other (6)

COMSOL Multiphysics 3.5, developed by COMSOL (network license 2008).

M. Born and E. Wolf, Principles of Optics (Cambridge University Press, 1999).

B. Z. Katsenelenbaum, High-Frequency Electrodynamics (Wiley-VCH, 2006).
[CrossRef]

R. Guenther, Modern Optics (Wiley, 1990).

S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).

Two SPP branches exist on the B layer, exhibiting odd and even symmetries. Here we only plot the even-mode SPP dispersion, since the other branch is at a higher frequency range.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) Unit cell structure of our design: a = 12 , b = 10 , g = 21.3 , e = 9 , p = 11 , l = 1 , and h = 0.6 mm , and the metal thickness is 0.018 mm . All substrates have ε = 3.5 , and for layer B the metallic mesh is sandwiched between two identical substrates. Pictures of fabricated (b) A and (c) B layers.

Fig. 2
Fig. 2

(a) Transmission spectra ( S 21 ) for the ABA structure with d = 3 mm , calculated by FEM and TMM. (b) Transmission peak frequencies as functions of d, calculated by FEM and TMM. The thicknesses of the homogenized A and B layers are assumed to be 0.6 and 1.2 mm , respectively, in TMM.

Fig. 3
Fig. 3

(a) Field distributions inside the structure (with d = 8 mm ) calculated at 7.08 GHz . (b) Dispersion relation of the SPP on the B layer. The arrow represents a reciprocal vector provided by layer A.

Fig. 4
Fig. 4

For the optimized structure (same values as in Fig. 1, with d = 0 mm ), simulated (solid curves) and measured (circles) spectra of transmission amplitudes and phases for two incident polarizations.

Fig. 5
Fig. 5

Simulation (solid curves) and experimental (circles) results for three typical polarization manipulation effects: (a) linear-to-circular conversion, (b) linear-to-elliptical conversion, and (c) polarization direction rotation.

Metrics