Abstract

When an intense laser pulse irradiates a solid-density foil target, electrons produced at the relativistic critical density can be accelerated to relativistic energy by the ponderomotive force. When a plasma fiber is attached to the back of the foil, the produced relativistic electrons are guided to propagate along the fiber for a long distance, because the high-current electron beam induces strong radial electric fields in the fiber. Transport and heating of intense laser-driven relativistic electrons in both wire and hollow plasma fibers are compared theoretically and numerically. We found that the coupling efficiency from the laser to the plasma fiber depends on the fiber structure. Because of the enhanced return currents in the wire fiber, the temperature in the wire fiber is higher than that in the hollow fiber.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Hasegawa and M. Matsumoto, Optical Solitons in Fibers (Springer-Verlag, 2003).
  2. S. Bahk, P. Rousseau, T. Planchon, V. Chvykov, G. Kalinchenko, A. Maksimchuk, G. Mourou, and V. Yanovsky, Opt. Lett. 29, 2837 (2004).
    [CrossRef]
  3. H. Hora, J. Badziak, F. P. Boody, R. Hopfl, K. Jungwirth, B. Kralikova, J. Krasa, L. Laska, P. Parys, V. Perina, M. Pfeifer, K. Rohlena, J. Skala, J. Ullschmied, J. Wolowski, and E. Woryna, Opt. Commun. 207, 333 (2002).
    [CrossRef]
  4. J. Zhang, E. E. Fill, Y. Li, D. Schlögl, J. Steingruber, M. Holden, G. J. Tallents, A. Demir, P. Zeitoun, C. Danson, P. A. Norreys, F. Walsh, M. H. Key, C. L. Lewis, and A. G. McPhee, Opt. Lett. 21, 1035 (1996).
    [CrossRef] [PubMed]
  5. P. A. Norreys, Nat. Photon. 3, 423 (2009).
    [CrossRef]
  6. C. T. Zhou and X. T. He, Opt. Lett. 32, 2444 (2007).
    [CrossRef] [PubMed]
  7. C. T. Zhou, L. Y. Chew, and X. T. He, Appl. Phys. Lett. 97, 051502 (2010), and references therein.
    [CrossRef]
  8. C. T. Zhou, X. G. Wang, S. Z. Wu, H. B. Cai, F. Wang, and X. T. He, Appl. Phys. Lett. 97, 201502 (2010).
    [CrossRef]
  9. J. Meyer-ter-Vehn, Plasma Phys. Control. Fusion 51, 124001 (2009).
    [CrossRef]

2010

C. T. Zhou, L. Y. Chew, and X. T. He, Appl. Phys. Lett. 97, 051502 (2010), and references therein.
[CrossRef]

C. T. Zhou, X. G. Wang, S. Z. Wu, H. B. Cai, F. Wang, and X. T. He, Appl. Phys. Lett. 97, 201502 (2010).
[CrossRef]

2009

J. Meyer-ter-Vehn, Plasma Phys. Control. Fusion 51, 124001 (2009).
[CrossRef]

P. A. Norreys, Nat. Photon. 3, 423 (2009).
[CrossRef]

2007

2004

2002

H. Hora, J. Badziak, F. P. Boody, R. Hopfl, K. Jungwirth, B. Kralikova, J. Krasa, L. Laska, P. Parys, V. Perina, M. Pfeifer, K. Rohlena, J. Skala, J. Ullschmied, J. Wolowski, and E. Woryna, Opt. Commun. 207, 333 (2002).
[CrossRef]

1996

Badziak, J.

H. Hora, J. Badziak, F. P. Boody, R. Hopfl, K. Jungwirth, B. Kralikova, J. Krasa, L. Laska, P. Parys, V. Perina, M. Pfeifer, K. Rohlena, J. Skala, J. Ullschmied, J. Wolowski, and E. Woryna, Opt. Commun. 207, 333 (2002).
[CrossRef]

Bahk, S.

Boody, F. P.

H. Hora, J. Badziak, F. P. Boody, R. Hopfl, K. Jungwirth, B. Kralikova, J. Krasa, L. Laska, P. Parys, V. Perina, M. Pfeifer, K. Rohlena, J. Skala, J. Ullschmied, J. Wolowski, and E. Woryna, Opt. Commun. 207, 333 (2002).
[CrossRef]

Cai, H. B.

C. T. Zhou, X. G. Wang, S. Z. Wu, H. B. Cai, F. Wang, and X. T. He, Appl. Phys. Lett. 97, 201502 (2010).
[CrossRef]

Chew, L. Y.

C. T. Zhou, L. Y. Chew, and X. T. He, Appl. Phys. Lett. 97, 051502 (2010), and references therein.
[CrossRef]

Chvykov, V.

Danson, C.

Demir, A.

Fill, E. E.

Hasegawa, A.

A. Hasegawa and M. Matsumoto, Optical Solitons in Fibers (Springer-Verlag, 2003).

He, X. T.

C. T. Zhou, X. G. Wang, S. Z. Wu, H. B. Cai, F. Wang, and X. T. He, Appl. Phys. Lett. 97, 201502 (2010).
[CrossRef]

C. T. Zhou, L. Y. Chew, and X. T. He, Appl. Phys. Lett. 97, 051502 (2010), and references therein.
[CrossRef]

C. T. Zhou and X. T. He, Opt. Lett. 32, 2444 (2007).
[CrossRef] [PubMed]

Holden, M.

Hopfl, R.

H. Hora, J. Badziak, F. P. Boody, R. Hopfl, K. Jungwirth, B. Kralikova, J. Krasa, L. Laska, P. Parys, V. Perina, M. Pfeifer, K. Rohlena, J. Skala, J. Ullschmied, J. Wolowski, and E. Woryna, Opt. Commun. 207, 333 (2002).
[CrossRef]

Hora, H.

H. Hora, J. Badziak, F. P. Boody, R. Hopfl, K. Jungwirth, B. Kralikova, J. Krasa, L. Laska, P. Parys, V. Perina, M. Pfeifer, K. Rohlena, J. Skala, J. Ullschmied, J. Wolowski, and E. Woryna, Opt. Commun. 207, 333 (2002).
[CrossRef]

Jungwirth, K.

H. Hora, J. Badziak, F. P. Boody, R. Hopfl, K. Jungwirth, B. Kralikova, J. Krasa, L. Laska, P. Parys, V. Perina, M. Pfeifer, K. Rohlena, J. Skala, J. Ullschmied, J. Wolowski, and E. Woryna, Opt. Commun. 207, 333 (2002).
[CrossRef]

Kalinchenko, G.

Key, M. H.

Kralikova, B.

H. Hora, J. Badziak, F. P. Boody, R. Hopfl, K. Jungwirth, B. Kralikova, J. Krasa, L. Laska, P. Parys, V. Perina, M. Pfeifer, K. Rohlena, J. Skala, J. Ullschmied, J. Wolowski, and E. Woryna, Opt. Commun. 207, 333 (2002).
[CrossRef]

Krasa, J.

H. Hora, J. Badziak, F. P. Boody, R. Hopfl, K. Jungwirth, B. Kralikova, J. Krasa, L. Laska, P. Parys, V. Perina, M. Pfeifer, K. Rohlena, J. Skala, J. Ullschmied, J. Wolowski, and E. Woryna, Opt. Commun. 207, 333 (2002).
[CrossRef]

Laska, L.

H. Hora, J. Badziak, F. P. Boody, R. Hopfl, K. Jungwirth, B. Kralikova, J. Krasa, L. Laska, P. Parys, V. Perina, M. Pfeifer, K. Rohlena, J. Skala, J. Ullschmied, J. Wolowski, and E. Woryna, Opt. Commun. 207, 333 (2002).
[CrossRef]

Lewis, C. L.

Li, Y.

Maksimchuk, A.

Matsumoto, M.

A. Hasegawa and M. Matsumoto, Optical Solitons in Fibers (Springer-Verlag, 2003).

McPhee, A. G.

Meyer-ter-Vehn, J.

J. Meyer-ter-Vehn, Plasma Phys. Control. Fusion 51, 124001 (2009).
[CrossRef]

Mourou, G.

Norreys, P. A.

Parys, P.

H. Hora, J. Badziak, F. P. Boody, R. Hopfl, K. Jungwirth, B. Kralikova, J. Krasa, L. Laska, P. Parys, V. Perina, M. Pfeifer, K. Rohlena, J. Skala, J. Ullschmied, J. Wolowski, and E. Woryna, Opt. Commun. 207, 333 (2002).
[CrossRef]

Perina, V.

H. Hora, J. Badziak, F. P. Boody, R. Hopfl, K. Jungwirth, B. Kralikova, J. Krasa, L. Laska, P. Parys, V. Perina, M. Pfeifer, K. Rohlena, J. Skala, J. Ullschmied, J. Wolowski, and E. Woryna, Opt. Commun. 207, 333 (2002).
[CrossRef]

Pfeifer, M.

H. Hora, J. Badziak, F. P. Boody, R. Hopfl, K. Jungwirth, B. Kralikova, J. Krasa, L. Laska, P. Parys, V. Perina, M. Pfeifer, K. Rohlena, J. Skala, J. Ullschmied, J. Wolowski, and E. Woryna, Opt. Commun. 207, 333 (2002).
[CrossRef]

Planchon, T.

Rohlena, K.

H. Hora, J. Badziak, F. P. Boody, R. Hopfl, K. Jungwirth, B. Kralikova, J. Krasa, L. Laska, P. Parys, V. Perina, M. Pfeifer, K. Rohlena, J. Skala, J. Ullschmied, J. Wolowski, and E. Woryna, Opt. Commun. 207, 333 (2002).
[CrossRef]

Rousseau, P.

Schlögl, D.

Skala, J.

H. Hora, J. Badziak, F. P. Boody, R. Hopfl, K. Jungwirth, B. Kralikova, J. Krasa, L. Laska, P. Parys, V. Perina, M. Pfeifer, K. Rohlena, J. Skala, J. Ullschmied, J. Wolowski, and E. Woryna, Opt. Commun. 207, 333 (2002).
[CrossRef]

Steingruber, J.

Tallents, G. J.

Ullschmied, J.

H. Hora, J. Badziak, F. P. Boody, R. Hopfl, K. Jungwirth, B. Kralikova, J. Krasa, L. Laska, P. Parys, V. Perina, M. Pfeifer, K. Rohlena, J. Skala, J. Ullschmied, J. Wolowski, and E. Woryna, Opt. Commun. 207, 333 (2002).
[CrossRef]

Walsh, F.

Wang, F.

C. T. Zhou, X. G. Wang, S. Z. Wu, H. B. Cai, F. Wang, and X. T. He, Appl. Phys. Lett. 97, 201502 (2010).
[CrossRef]

Wang, X. G.

C. T. Zhou, X. G. Wang, S. Z. Wu, H. B. Cai, F. Wang, and X. T. He, Appl. Phys. Lett. 97, 201502 (2010).
[CrossRef]

Wolowski, J.

H. Hora, J. Badziak, F. P. Boody, R. Hopfl, K. Jungwirth, B. Kralikova, J. Krasa, L. Laska, P. Parys, V. Perina, M. Pfeifer, K. Rohlena, J. Skala, J. Ullschmied, J. Wolowski, and E. Woryna, Opt. Commun. 207, 333 (2002).
[CrossRef]

Woryna, E.

H. Hora, J. Badziak, F. P. Boody, R. Hopfl, K. Jungwirth, B. Kralikova, J. Krasa, L. Laska, P. Parys, V. Perina, M. Pfeifer, K. Rohlena, J. Skala, J. Ullschmied, J. Wolowski, and E. Woryna, Opt. Commun. 207, 333 (2002).
[CrossRef]

Wu, S. Z.

C. T. Zhou, X. G. Wang, S. Z. Wu, H. B. Cai, F. Wang, and X. T. He, Appl. Phys. Lett. 97, 201502 (2010).
[CrossRef]

Yanovsky, V.

Zeitoun, P.

Zhang, J.

Zhou, C. T.

C. T. Zhou, X. G. Wang, S. Z. Wu, H. B. Cai, F. Wang, and X. T. He, Appl. Phys. Lett. 97, 201502 (2010).
[CrossRef]

C. T. Zhou, L. Y. Chew, and X. T. He, Appl. Phys. Lett. 97, 051502 (2010), and references therein.
[CrossRef]

C. T. Zhou and X. T. He, Opt. Lett. 32, 2444 (2007).
[CrossRef] [PubMed]

Appl. Phys. Lett.

C. T. Zhou, L. Y. Chew, and X. T. He, Appl. Phys. Lett. 97, 051502 (2010), and references therein.
[CrossRef]

C. T. Zhou, X. G. Wang, S. Z. Wu, H. B. Cai, F. Wang, and X. T. He, Appl. Phys. Lett. 97, 201502 (2010).
[CrossRef]

Nat. Photon.

P. A. Norreys, Nat. Photon. 3, 423 (2009).
[CrossRef]

Opt. Commun.

H. Hora, J. Badziak, F. P. Boody, R. Hopfl, K. Jungwirth, B. Kralikova, J. Krasa, L. Laska, P. Parys, V. Perina, M. Pfeifer, K. Rohlena, J. Skala, J. Ullschmied, J. Wolowski, and E. Woryna, Opt. Commun. 207, 333 (2002).
[CrossRef]

Opt. Lett.

Plasma Phys. Control. Fusion

J. Meyer-ter-Vehn, Plasma Phys. Control. Fusion 51, 124001 (2009).
[CrossRef]

Other

A. Hasegawa and M. Matsumoto, Optical Solitons in Fibers (Springer-Verlag, 2003).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

(a), (b) Configuration of slab-wire and slab-hollow-plasma-fibers, respectively. (c), (d) Corresponding background plasma electron temperature (in electron volts) at t = 1 ps . (e) Temperature profiles T e ( x 0 , z ) with x 0 = 0 and 10.1 μm for the wire and the hollow fiber, respectively. (f)  T e ( x , z = 100 μm ) .

Fig. 2
Fig. 2

Snapshots of the beam electron trajectories, velocity distribution, and electric fields at t = 100 fs . (a) and (d) Electron beam distribution in the ( z , x ) plane. (b) and (e)  v z component of the velocity and the intensity distribution of v z (in units of β γ ) of the beam electrons. (c) and (f)  E z component of the electric field (in volts per meter). The thin dashed lines show the fiber plasma. The first and second rows correspond to the wire and hollow fibers, respectively.

Fig. 3
Fig. 3

Snapshots of the beam electron density, radial electric field, magnetic field, and returned current density at t = 1 ps . (a), (e) The beam electron density (in n e / n cr ). (b), (f) E x component of the field (in 10 12 V / m ), respectively. The trajectories of several typical beam electrons initially at ( z , x ) = ( 20 , 0 ) μm show the control due to the transverse electric field E x around the plasma fiber. (c), (g) B y component of the magnetic field (in megagauss). (d), (h) The cold-return electron current densities (in 10 12 A / c m 2 ).

Metrics