Abstract

We experimentally demonstrated an efficient optical parametric oscillator (OPO) with high parametric conversion from 1.0645 to 3.8μm. An aperiodically poled magnesium oxide doped lithium niobate wafer was designed and fabricated as the nonlinear crystal of the OPO. A linearly polarized acousto-optic Q-switched Nd:YVO4 laser was used as the pump source. High pump-to-idler conversion efficiency of 18.5% was achieved with a slope efficiency of up to 21.5%. When compared with a periodically poled channel fabricated on the same wafer, under the condition of output coupler optimized for the periodically poled lithium niobate based OPO, an improvement of slope efficiency by 28.3% from 15.2% to 19.5% and total efficiency by 12.5% from 13.6% to 15.3% under the highest pump power of 11W was realized for the pump-to-idler conversion.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. P. Petrov, L. Goldberg, W. K. Burns, R. F. Curl, and F. K. Tittel, Opt. Lett. 21, 36 (1996).
    [CrossRef]
  2. R. W. Waynant, I. K. Ilev, and I. Gannot, Phil. Trans. R. Soc. A 359, 635 (2001).
    [CrossRef]
  3. H. H. P.T. Bekman, J. C. van den Heuvel, F. J. M. van Putten, and H. M. A. Schleijpen, Proc. SPIE 5615, 27 (2004).
    [CrossRef]
  4. B. Wu, J. Kong, and Y. Shen, Opt. Lett. 35, 1118 (2010).
    [CrossRef] [PubMed]
  5. Z. Sacks, O. Gayer, E. Tal, and A. Arie, Opt. Express 18, 12669 (2010).
    [CrossRef] [PubMed]
  6. M. Vaidyanathan, R. C. Eckardt, V. Dominic, L. E. Myers, and T. P. Grayson, Opt. Express 1, 49 (1997).
    [CrossRef] [PubMed]
  7. M. E. Dearborn, K. Koch, and G. T. Moore, Opt. Lett. 23, 759 (1998).
    [CrossRef]
  8. S. Zhu, Y. Zhu, and N. Ming, Science 278, 843 (1997).
    [CrossRef]
  9. S. Zhu, Y. Zhu, Y. Qin, H. Wang, C. Ge, and N. Ming, Phys. Rev. Lett. 78, 2752 (1997).
    [CrossRef]
  10. T. Kartaloğlu, Z. G. Figen, and O. Aytür, J. Opt. Soc. Am. B 20, 343 (2003).
    [CrossRef]
  11. G. Porat, O. Gayer, and A. Arie, Opt. Lett. 35, 1401 (2010).
    [CrossRef] [PubMed]
  12. B. Wu, Y. Shen, and S. Cai, Opt. Laser. Technol. 39, 1115 (2007).
    [CrossRef]

2010

2007

B. Wu, Y. Shen, and S. Cai, Opt. Laser. Technol. 39, 1115 (2007).
[CrossRef]

2004

H. H. P.T. Bekman, J. C. van den Heuvel, F. J. M. van Putten, and H. M. A. Schleijpen, Proc. SPIE 5615, 27 (2004).
[CrossRef]

2003

2001

R. W. Waynant, I. K. Ilev, and I. Gannot, Phil. Trans. R. Soc. A 359, 635 (2001).
[CrossRef]

1998

1997

S. Zhu, Y. Zhu, and N. Ming, Science 278, 843 (1997).
[CrossRef]

S. Zhu, Y. Zhu, Y. Qin, H. Wang, C. Ge, and N. Ming, Phys. Rev. Lett. 78, 2752 (1997).
[CrossRef]

M. Vaidyanathan, R. C. Eckardt, V. Dominic, L. E. Myers, and T. P. Grayson, Opt. Express 1, 49 (1997).
[CrossRef] [PubMed]

1996

Arie, A.

Aytür, O.

Bekman, H. H. P.T.

H. H. P.T. Bekman, J. C. van den Heuvel, F. J. M. van Putten, and H. M. A. Schleijpen, Proc. SPIE 5615, 27 (2004).
[CrossRef]

Burns, W. K.

Cai, S.

B. Wu, Y. Shen, and S. Cai, Opt. Laser. Technol. 39, 1115 (2007).
[CrossRef]

Curl, R. F.

Dearborn, M. E.

Dominic, V.

Eckardt, R. C.

Figen, Z. G.

Gannot, I.

R. W. Waynant, I. K. Ilev, and I. Gannot, Phil. Trans. R. Soc. A 359, 635 (2001).
[CrossRef]

Gayer, O.

Ge, C.

S. Zhu, Y. Zhu, Y. Qin, H. Wang, C. Ge, and N. Ming, Phys. Rev. Lett. 78, 2752 (1997).
[CrossRef]

Goldberg, L.

Grayson, T. P.

Ilev, I. K.

R. W. Waynant, I. K. Ilev, and I. Gannot, Phil. Trans. R. Soc. A 359, 635 (2001).
[CrossRef]

Kartaloglu, T.

Koch, K.

Kong, J.

Ming, N.

S. Zhu, Y. Zhu, Y. Qin, H. Wang, C. Ge, and N. Ming, Phys. Rev. Lett. 78, 2752 (1997).
[CrossRef]

S. Zhu, Y. Zhu, and N. Ming, Science 278, 843 (1997).
[CrossRef]

Moore, G. T.

Myers, L. E.

Petrov, K. P.

Porat, G.

Qin, Y.

S. Zhu, Y. Zhu, Y. Qin, H. Wang, C. Ge, and N. Ming, Phys. Rev. Lett. 78, 2752 (1997).
[CrossRef]

Sacks, Z.

Schleijpen, H. M. A.

H. H. P.T. Bekman, J. C. van den Heuvel, F. J. M. van Putten, and H. M. A. Schleijpen, Proc. SPIE 5615, 27 (2004).
[CrossRef]

Shen, Y.

B. Wu, J. Kong, and Y. Shen, Opt. Lett. 35, 1118 (2010).
[CrossRef] [PubMed]

B. Wu, Y. Shen, and S. Cai, Opt. Laser. Technol. 39, 1115 (2007).
[CrossRef]

Tal, E.

Tittel, F. K.

Vaidyanathan, M.

van den Heuvel, J. C.

H. H. P.T. Bekman, J. C. van den Heuvel, F. J. M. van Putten, and H. M. A. Schleijpen, Proc. SPIE 5615, 27 (2004).
[CrossRef]

van Putten, F. J. M.

H. H. P.T. Bekman, J. C. van den Heuvel, F. J. M. van Putten, and H. M. A. Schleijpen, Proc. SPIE 5615, 27 (2004).
[CrossRef]

Wang, H.

S. Zhu, Y. Zhu, Y. Qin, H. Wang, C. Ge, and N. Ming, Phys. Rev. Lett. 78, 2752 (1997).
[CrossRef]

Waynant, R. W.

R. W. Waynant, I. K. Ilev, and I. Gannot, Phil. Trans. R. Soc. A 359, 635 (2001).
[CrossRef]

Wu, B.

B. Wu, J. Kong, and Y. Shen, Opt. Lett. 35, 1118 (2010).
[CrossRef] [PubMed]

B. Wu, Y. Shen, and S. Cai, Opt. Laser. Technol. 39, 1115 (2007).
[CrossRef]

Zhu, S.

S. Zhu, Y. Zhu, and N. Ming, Science 278, 843 (1997).
[CrossRef]

S. Zhu, Y. Zhu, Y. Qin, H. Wang, C. Ge, and N. Ming, Phys. Rev. Lett. 78, 2752 (1997).
[CrossRef]

Zhu, Y.

S. Zhu, Y. Zhu, Y. Qin, H. Wang, C. Ge, and N. Ming, Phys. Rev. Lett. 78, 2752 (1997).
[CrossRef]

S. Zhu, Y. Zhu, and N. Ming, Science 278, 843 (1997).
[CrossRef]

J. Opt. Soc. Am. B

Opt. Express

Opt. Laser. Technol.

B. Wu, Y. Shen, and S. Cai, Opt. Laser. Technol. 39, 1115 (2007).
[CrossRef]

Opt. Lett.

Phil. Trans. R. Soc. A

R. W. Waynant, I. K. Ilev, and I. Gannot, Phil. Trans. R. Soc. A 359, 635 (2001).
[CrossRef]

Phys. Rev. Lett.

S. Zhu, Y. Zhu, Y. Qin, H. Wang, C. Ge, and N. Ming, Phys. Rev. Lett. 78, 2752 (1997).
[CrossRef]

Proc. SPIE

H. H. P.T. Bekman, J. C. van den Heuvel, F. J. M. van Putten, and H. M. A. Schleijpen, Proc. SPIE 5615, 27 (2004).
[CrossRef]

Science

S. Zhu, Y. Zhu, and N. Ming, Science 278, 843 (1997).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Fast Fourier transform of the designed APMgLN lattice. The Fourier coefficients related to the OPO and DFG processes are G OPO = 0.392 and G DFG = 0.393 , respectively. Inset was a microscopic image of the eroded surface of the APMgLN crystal (Nikon M600).

Fig. 2
Fig. 2

Scheme of the experimental setups: HWP, half-wave plate at 1064 nm ; PBS, polarization beam splitter; FR, the Faraday rotator; QR, the quartz rotator; M3, the filter tilted with an angle to let idler pass through and to prevent the other wavelengths reflecting back into the cavity.

Fig. 3
Fig. 3

(a) Measured idler spectra of the OPO under several different crystal temperatures. (b) The peak wavelengths generated by the OPO and the DFG processes as a function of the crystal temperature. The solid black and red curves were the fitted curves of the measured wavelengths generated by the OPO and the DFG processes at different temperatures, respectively.

Fig. 4
Fig. 4

Experimentally measured idler pump power relations with different structured channels and different output couplers.

Metrics