Abstract

It is shown that random duty-cycle errors in quasi-phase-matching (QPM) nonlinear optical devices enhance the efficiency of processes far from the QPM peak. An analytical theory is shown to agree well with numerical solutions of second-harmonic generation (SHG) in disordered QPM gratings. The measured efficiency of 1550nm band SHG in a periodically poled lithium niobate (PPLN) waveguide away from the QPM peak agrees with observations of domain disorder in a PPLN wafer by Zygo interferometry. If suppression of parasitic nonlinear interactions is important in a specific application of QPM devices, control of random duty-cycle errors is critical.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, Phys. Rev. 127, 1918 (1962).
    [CrossRef]
  2. M. Yamada, N . Nada, M. Saitoh, and K. Watanabe, Appl. Phys. Lett. 62, 435 (1993).
    [CrossRef]
  3. L. E. Myers, R. C. Eckardt, M. M. Fejer, R. L. Byer, W. R. Bosenberg, and J. W. Pierce, J. Opt. Soc. Am. 12, 2102 (1995).
    [CrossRef]
  4. C. Langrock, E. Diamanti, R. V. Roussev, Y. Yamamoto, M. M. Fejer, and H. Takesue, Opt. Lett. 30, 1725 (2005).
    [CrossRef] [PubMed]
  5. M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, IEEE J. Quantum Electron. 28, 2631 (1992).
    [CrossRef]
  6. S. Helmfrid and G. Arvidsson, J. Opt. Soc. Am. B 8, 797 (1991).
    [CrossRef]
  7. J. S. Pelc, C. Langrock, Q. Zhang, and M. M. Fejer, Opt. Lett. 35, 2804 (2010).
    [CrossRef] [PubMed]
  8. M. Baudrier-Raybaut, R. Haïdar, Ph. Kupecek, Ph. Lemasson, and E. Rosencher, Nature 432, 374 (2004).
    [CrossRef] [PubMed]
  9. R. V. Roussev, “Optical-frequency mixers in periodically poled lithium niobate: materials, modeling, and characterization,” Ph.D. dissertation (Stanford University, 2006).

2010 (1)

2005 (1)

2004 (1)

M. Baudrier-Raybaut, R. Haïdar, Ph. Kupecek, Ph. Lemasson, and E. Rosencher, Nature 432, 374 (2004).
[CrossRef] [PubMed]

1995 (1)

L. E. Myers, R. C. Eckardt, M. M. Fejer, R. L. Byer, W. R. Bosenberg, and J. W. Pierce, J. Opt. Soc. Am. 12, 2102 (1995).
[CrossRef]

1993 (1)

M. Yamada, N . Nada, M. Saitoh, and K. Watanabe, Appl. Phys. Lett. 62, 435 (1993).
[CrossRef]

1992 (1)

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, IEEE J. Quantum Electron. 28, 2631 (1992).
[CrossRef]

1991 (1)

1962 (1)

J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, Phys. Rev. 127, 1918 (1962).
[CrossRef]

Armstrong, J. A.

J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, Phys. Rev. 127, 1918 (1962).
[CrossRef]

Arvidsson, G.

Baudrier-Raybaut, M.

M. Baudrier-Raybaut, R. Haïdar, Ph. Kupecek, Ph. Lemasson, and E. Rosencher, Nature 432, 374 (2004).
[CrossRef] [PubMed]

Bloembergen, N.

J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, Phys. Rev. 127, 1918 (1962).
[CrossRef]

Bosenberg, W. R.

L. E. Myers, R. C. Eckardt, M. M. Fejer, R. L. Byer, W. R. Bosenberg, and J. W. Pierce, J. Opt. Soc. Am. 12, 2102 (1995).
[CrossRef]

Byer, R. L.

L. E. Myers, R. C. Eckardt, M. M. Fejer, R. L. Byer, W. R. Bosenberg, and J. W. Pierce, J. Opt. Soc. Am. 12, 2102 (1995).
[CrossRef]

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, IEEE J. Quantum Electron. 28, 2631 (1992).
[CrossRef]

Diamanti, E.

Ducuing, J.

J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, Phys. Rev. 127, 1918 (1962).
[CrossRef]

Eckardt, R. C.

L. E. Myers, R. C. Eckardt, M. M. Fejer, R. L. Byer, W. R. Bosenberg, and J. W. Pierce, J. Opt. Soc. Am. 12, 2102 (1995).
[CrossRef]

Fejer, M. M.

J. S. Pelc, C. Langrock, Q. Zhang, and M. M. Fejer, Opt. Lett. 35, 2804 (2010).
[CrossRef] [PubMed]

C. Langrock, E. Diamanti, R. V. Roussev, Y. Yamamoto, M. M. Fejer, and H. Takesue, Opt. Lett. 30, 1725 (2005).
[CrossRef] [PubMed]

L. E. Myers, R. C. Eckardt, M. M. Fejer, R. L. Byer, W. R. Bosenberg, and J. W. Pierce, J. Opt. Soc. Am. 12, 2102 (1995).
[CrossRef]

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, IEEE J. Quantum Electron. 28, 2631 (1992).
[CrossRef]

Haïdar, R.

M. Baudrier-Raybaut, R. Haïdar, Ph. Kupecek, Ph. Lemasson, and E. Rosencher, Nature 432, 374 (2004).
[CrossRef] [PubMed]

Helmfrid, S.

Jundt, D. H.

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, IEEE J. Quantum Electron. 28, 2631 (1992).
[CrossRef]

Kupecek, Ph.

M. Baudrier-Raybaut, R. Haïdar, Ph. Kupecek, Ph. Lemasson, and E. Rosencher, Nature 432, 374 (2004).
[CrossRef] [PubMed]

Langrock, C.

Lemasson, Ph.

M. Baudrier-Raybaut, R. Haïdar, Ph. Kupecek, Ph. Lemasson, and E. Rosencher, Nature 432, 374 (2004).
[CrossRef] [PubMed]

Magel, G. A.

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, IEEE J. Quantum Electron. 28, 2631 (1992).
[CrossRef]

Myers, L. E.

L. E. Myers, R. C. Eckardt, M. M. Fejer, R. L. Byer, W. R. Bosenberg, and J. W. Pierce, J. Opt. Soc. Am. 12, 2102 (1995).
[CrossRef]

Nada, N .

M. Yamada, N . Nada, M. Saitoh, and K. Watanabe, Appl. Phys. Lett. 62, 435 (1993).
[CrossRef]

Pelc, J. S.

Pershan, P. S.

J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, Phys. Rev. 127, 1918 (1962).
[CrossRef]

Pierce, J. W.

L. E. Myers, R. C. Eckardt, M. M. Fejer, R. L. Byer, W. R. Bosenberg, and J. W. Pierce, J. Opt. Soc. Am. 12, 2102 (1995).
[CrossRef]

Rosencher, E.

M. Baudrier-Raybaut, R. Haïdar, Ph. Kupecek, Ph. Lemasson, and E. Rosencher, Nature 432, 374 (2004).
[CrossRef] [PubMed]

Roussev, R. V.

C. Langrock, E. Diamanti, R. V. Roussev, Y. Yamamoto, M. M. Fejer, and H. Takesue, Opt. Lett. 30, 1725 (2005).
[CrossRef] [PubMed]

R. V. Roussev, “Optical-frequency mixers in periodically poled lithium niobate: materials, modeling, and characterization,” Ph.D. dissertation (Stanford University, 2006).

Saitoh, M.

M. Yamada, N . Nada, M. Saitoh, and K. Watanabe, Appl. Phys. Lett. 62, 435 (1993).
[CrossRef]

Takesue, H.

Watanabe, K.

M. Yamada, N . Nada, M. Saitoh, and K. Watanabe, Appl. Phys. Lett. 62, 435 (1993).
[CrossRef]

Yamada, M.

M. Yamada, N . Nada, M. Saitoh, and K. Watanabe, Appl. Phys. Lett. 62, 435 (1993).
[CrossRef]

Yamamoto, Y.

Zhang, Q.

Appl. Phys. Lett. (1)

M. Yamada, N . Nada, M. Saitoh, and K. Watanabe, Appl. Phys. Lett. 62, 435 (1993).
[CrossRef]

IEEE J. Quantum Electron. (1)

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, IEEE J. Quantum Electron. 28, 2631 (1992).
[CrossRef]

J. Opt. Soc. Am. (1)

L. E. Myers, R. C. Eckardt, M. M. Fejer, R. L. Byer, W. R. Bosenberg, and J. W. Pierce, J. Opt. Soc. Am. 12, 2102 (1995).
[CrossRef]

J. Opt. Soc. Am. B (1)

Nature (1)

M. Baudrier-Raybaut, R. Haïdar, Ph. Kupecek, Ph. Lemasson, and E. Rosencher, Nature 432, 374 (2004).
[CrossRef] [PubMed]

Opt. Lett. (2)

Phys. Rev. (1)

J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, Phys. Rev. 127, 1918 (1962).
[CrossRef]

Other (1)

R. V. Roussev, “Optical-frequency mixers in periodically poled lithium niobate: materials, modeling, and characterization,” Ph.D. dissertation (Stanford University, 2006).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic of RDC errors in a nonideal QPM grating: δ l n = 0 , where δ l n = l n l , with l n = z n + 1 z n and l = l n = Λ G / 2 .

Fig. 2
Fig. 2

SHG efficiency in a disordered QPM grating versus normalized deviation from the QPM peak; the ensemble average is computed over 100 randomly perturbed gratings, with σ l / l = 20 % .

Fig. 3
Fig. 3

(a) Surface topography of etched PPLN with Λ G = 10.22 μm measured with a Zygo interferometer, (b) width histogram of approximately 280 inverted domains (bars) and Gaussian fit (black).

Fig. 4
Fig. 4

Measured relative SHG efficiency | g ˜ ( λ ) | 2 (blue dashed) plotted against sinc 2 ( Δ k L / 2 ) QPM tuning curve (solid black), showing the efficiency pedestal far from the QPM peak. Inset 1, measured SHG tuning curve plotted on linear scale; Inset 2, zoom of measured data between 1555 and 1560 nm .

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

a 2 ( L ) = 0 L g ( z ) e i Δ k z d z ,
g ( z ) = π 2 L n = 1 N ( 1 ) n Π ( z ( z n l n / 2 ) l n ) ,
| g ˜ ( Δ k ) | 2 = f ( σ l ) sinc 2 ( Δ k L 2 ) + 1 f ( σ l ) N ,

Metrics