Abstract

Specular resonance by periodic bilayer cylinders is electromagnetically analyzed for the first time to our knowledge. The phenomenon occurs when the radius is roughly 0.8 times the wavelength. It is also discovered that the structure behaves as a good guided-mode resonant grating filter when the radius is around 0.4 times the wavelength.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. T. Miyazaki, H. Miyazaki, and K. Miyano, Opt. Lett. 27, 1208 (2002).
    [CrossRef]
  2. H. T. Miyazaki, H. Miyazaki, and K. Miyano, J. Opt. Soc. Am. A 20, 1771 (2003).
    [CrossRef]
  3. H. T. Miyazaki, H. Miyazaki, N. Shinya, and K. Miyano, Appl. Phys. Lett. 83, 3662 (2003).
    [CrossRef]
  4. H. T. Miyazaki, H. Miyazaki, Y. Jimba, Y. Kurokawa, N. Shinya, and K. Miyano, J. Appl. Phys. 95, 793 (2004).
    [CrossRef]
  5. R. T. Wang, J. M. Greenberg, and D. W. Schuerman, Opt. Lett. 6, 543 (1981).
    [CrossRef] [PubMed]
  6. G. W. Kattawar and C. E. Dean, Opt. Lett. 8, 48 (1983).
    [CrossRef] [PubMed]
  7. K. A. Fuller, G. W. Kattawar, and R. T. Wang, Appl. Opt. 25, 2521 (1986).
    [CrossRef] [PubMed]
  8. J. Turunen, in Micro-Optics, H.P.Herzig, ed. (Taylor & Francis, 1997), pp. 31–52.
  9. L. Li, J. Opt. Soc. Am. A 13, 1024 (1996).
    [CrossRef]
  10. L. Li, J. Chandezon, G. Granet, and J.-P. Plumey, Appl. Opt. 38, 304 (1999).
    [CrossRef]
  11. H. Ichikawa, J. Opt. A 6, S121 (2004).
    [CrossRef]

2004 (2)

H. T. Miyazaki, H. Miyazaki, Y. Jimba, Y. Kurokawa, N. Shinya, and K. Miyano, J. Appl. Phys. 95, 793 (2004).
[CrossRef]

H. Ichikawa, J. Opt. A 6, S121 (2004).
[CrossRef]

2003 (2)

H. T. Miyazaki, H. Miyazaki, and K. Miyano, J. Opt. Soc. Am. A 20, 1771 (2003).
[CrossRef]

H. T. Miyazaki, H. Miyazaki, N. Shinya, and K. Miyano, Appl. Phys. Lett. 83, 3662 (2003).
[CrossRef]

2002 (1)

1999 (1)

1996 (1)

1986 (1)

1983 (1)

1981 (1)

Chandezon, J.

Dean, C. E.

Fuller, K. A.

Granet, G.

Greenberg, J. M.

Ichikawa, H.

H. Ichikawa, J. Opt. A 6, S121 (2004).
[CrossRef]

Jimba, Y.

H. T. Miyazaki, H. Miyazaki, Y. Jimba, Y. Kurokawa, N. Shinya, and K. Miyano, J. Appl. Phys. 95, 793 (2004).
[CrossRef]

Kattawar, G. W.

Kurokawa, Y.

H. T. Miyazaki, H. Miyazaki, Y. Jimba, Y. Kurokawa, N. Shinya, and K. Miyano, J. Appl. Phys. 95, 793 (2004).
[CrossRef]

Li, L.

Miyano, K.

H. T. Miyazaki, H. Miyazaki, Y. Jimba, Y. Kurokawa, N. Shinya, and K. Miyano, J. Appl. Phys. 95, 793 (2004).
[CrossRef]

H. T. Miyazaki, H. Miyazaki, N. Shinya, and K. Miyano, Appl. Phys. Lett. 83, 3662 (2003).
[CrossRef]

H. T. Miyazaki, H. Miyazaki, and K. Miyano, J. Opt. Soc. Am. A 20, 1771 (2003).
[CrossRef]

H. T. Miyazaki, H. Miyazaki, and K. Miyano, Opt. Lett. 27, 1208 (2002).
[CrossRef]

Miyazaki, H.

H. T. Miyazaki, H. Miyazaki, Y. Jimba, Y. Kurokawa, N. Shinya, and K. Miyano, J. Appl. Phys. 95, 793 (2004).
[CrossRef]

H. T. Miyazaki, H. Miyazaki, and K. Miyano, J. Opt. Soc. Am. A 20, 1771 (2003).
[CrossRef]

H. T. Miyazaki, H. Miyazaki, N. Shinya, and K. Miyano, Appl. Phys. Lett. 83, 3662 (2003).
[CrossRef]

H. T. Miyazaki, H. Miyazaki, and K. Miyano, Opt. Lett. 27, 1208 (2002).
[CrossRef]

Miyazaki, H. T.

H. T. Miyazaki, H. Miyazaki, Y. Jimba, Y. Kurokawa, N. Shinya, and K. Miyano, J. Appl. Phys. 95, 793 (2004).
[CrossRef]

H. T. Miyazaki, H. Miyazaki, and K. Miyano, J. Opt. Soc. Am. A 20, 1771 (2003).
[CrossRef]

H. T. Miyazaki, H. Miyazaki, N. Shinya, and K. Miyano, Appl. Phys. Lett. 83, 3662 (2003).
[CrossRef]

H. T. Miyazaki, H. Miyazaki, and K. Miyano, Opt. Lett. 27, 1208 (2002).
[CrossRef]

Plumey, J.-P.

Schuerman, D. W.

Shinya, N.

H. T. Miyazaki, H. Miyazaki, Y. Jimba, Y. Kurokawa, N. Shinya, and K. Miyano, J. Appl. Phys. 95, 793 (2004).
[CrossRef]

H. T. Miyazaki, H. Miyazaki, N. Shinya, and K. Miyano, Appl. Phys. Lett. 83, 3662 (2003).
[CrossRef]

Turunen, J.

J. Turunen, in Micro-Optics, H.P.Herzig, ed. (Taylor & Francis, 1997), pp. 31–52.

Wang, R. T.

Appl. Opt. (2)

Appl. Phys. Lett. (1)

H. T. Miyazaki, H. Miyazaki, N. Shinya, and K. Miyano, Appl. Phys. Lett. 83, 3662 (2003).
[CrossRef]

J. Appl. Phys. (1)

H. T. Miyazaki, H. Miyazaki, Y. Jimba, Y. Kurokawa, N. Shinya, and K. Miyano, J. Appl. Phys. 95, 793 (2004).
[CrossRef]

J. Opt. A (1)

H. Ichikawa, J. Opt. A 6, S121 (2004).
[CrossRef]

J. Opt. Soc. Am. A (2)

Opt. Lett. (3)

Other (1)

J. Turunen, in Micro-Optics, H.P.Herzig, ed. (Taylor & Francis, 1997), pp. 31–52.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Specular reflection by (a) a set of bispheres and (b) close-packed bilayer structures.

Fig. 2
Fig. 2

Slicing strategies, L = 10 . A, equithickness; B, two- level thickness; C, variable thickness.

Fig. 3
Fig. 3

Convergence study. r = 0.6 μm , θ = 0 deg , M = 50 .

Fig. 4
Fig. 4

TM transmission properties for r = 0.4 , 0.6, and 2.0 μm .

Fig. 5
Fig. 5

TM transmission efficiencies for r = 2.0 μm . Numbers in the graph denote m.

Fig. 6
Fig. 6

Various structures considered. Colored lines denote planes for Bragg diffraction. (a) Close-packed bilayer, (b) close-packed trilayer, (c) simply stacked bilayer, (d) simply stacked trilayer.

Fig. 7
Fig. 7

TM transmission properties for r = 0.6 μm . (a) Close-packed trilayer, (b) simply stacked bilayer, (c) stacked trilayer.

Fig. 8
Fig. 8

Transmission efficiencies for close-packed bilayer cylinders with r = 0.2 μm .

Tables (1)

Tables Icon

Table 1 Candidates for Bragg Orders and Estimated n ˜ j for Close-Packed Cylinder of r = 2 μ m a

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

sin θ m sin θ = m λ / ( 2 r ) ,
sin ϕ j = j λ / ( 2 Λ n ˜ j ) ,

Metrics