Abstract

We describe a compact double-layer waveguide grating splitter that not only achieves efficient coupling between single mode fiber and a silicon-on-insulator optical waveguide but also realizes effective splitting. By appropriate choice of waveguide/grating parameters, including thicknesses, periods, height, and fill factor to optimize the mode matching, coupling efficiency is improved and the value of power difference of each output port is also significantly decreased. The maximum of power difference between four output ports is about 6.2%; however, the minimum value is only 0.6% or so. Moreover, the average power difference of four output ports is lower than 10% for TE polarization light over the 10nm wavelength bandwidth centered at 1.54μm. In addition, the splitter structure has the best tolerance for grating fabrication with deviations of grating depth 90nm.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. Roelkens, D. Van Thourhout, and R. Baets, Opt. Express 14, 11622 (2006).
    [CrossRef] [PubMed]
  2. S. Shao and Y. Wang, Opt. Lett. 35, 1834 (2010).
    [CrossRef] [PubMed]
  3. Y. Tang, Z. Wang, L. Wosinski, and U. Westergren, Opt. Lett. 35, 1290 (2010).
    [CrossRef] [PubMed]
  4. D. Yi, Y. Yan, H. Liu, S. Lu, and G. Jin, Opt. Lett. 29, 754 (2004).
    [CrossRef] [PubMed]
  5. L Zhou and W. Liu, Opt. Lett. 30, 1434 (2005).
    [CrossRef] [PubMed]
  6. X. Chen, C. Li, and H. Tsang, IEEE Photon. Technol. Lett. 21, 268 (2009).
    [CrossRef]
  7. M. Born and E. Wolf, Principles of Optics, 7th ed.(extended) (Cambridge University, 1999).
  8. J. L. Pezzaniti and R. A. Chipman, Appl. Opt. 33, 1916(1994).
    [CrossRef]
  9. J. Feng and Z. Zhou, Opt. Lett. 32, 1662 (2007).
    [CrossRef] [PubMed]
  10. Z. Zhou and T. J. Drabik, J. Opt. Soc. Am. A 12, 1104 (1995).
    [CrossRef]
  11. M.-S. L. Lee, P. Lalanne, and J.-C. Rodier, Opt. Lett. 25, 1690 (2000).
    [CrossRef]

2010 (2)

2009 (1)

X. Chen, C. Li, and H. Tsang, IEEE Photon. Technol. Lett. 21, 268 (2009).
[CrossRef]

2007 (1)

2006 (1)

2005 (1)

2004 (1)

2000 (1)

1995 (1)

1994 (1)

Baets, R.

Born, M.

M. Born and E. Wolf, Principles of Optics, 7th ed.(extended) (Cambridge University, 1999).

Chen, X.

X. Chen, C. Li, and H. Tsang, IEEE Photon. Technol. Lett. 21, 268 (2009).
[CrossRef]

Chipman, R. A.

Drabik, T. J.

Feng, J.

Jin, G.

Lalanne, P.

Lee, M.-S. L.

Li, C.

X. Chen, C. Li, and H. Tsang, IEEE Photon. Technol. Lett. 21, 268 (2009).
[CrossRef]

Liu, H.

Liu, W.

Lu, S.

Pezzaniti, J. L.

Rodier, J.-C.

Roelkens, G.

Shao, S.

Tang, Y.

Tsang, H.

X. Chen, C. Li, and H. Tsang, IEEE Photon. Technol. Lett. 21, 268 (2009).
[CrossRef]

Van Thourhout, D.

Wang, Y.

Wang, Z.

Westergren, U.

Wolf, E.

M. Born and E. Wolf, Principles of Optics, 7th ed.(extended) (Cambridge University, 1999).

Wosinski, L.

Yan, Y.

Yi, D.

Zhou, L

Zhou, Z.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Single-layer 1 × 2 grating splitter.

Fig. 2
Fig. 2

Distribution of Poynting vector S Z .

Fig. 3
Fig. 3

Comparison between the output wave profiles of the two branches.

Fig. 4
Fig. 4

Double-layer binary blazed grating structure.

Fig. 5
Fig. 5

Distribution of optical field within double-layer grating.

Fig. 6
Fig. 6

Wave profiles of the right and the left branches.

Fig. 7
Fig. 7

Relationship between normalized power and wavelength.

Fig. 8
Fig. 8

Relationship between normalized power and grating depth.

Tables (2)

Tables Icon

Table 1 Corresponding Parameters to Simulation a

Tables Icon

Table 2 Normalized Power Value of Each Port

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

( n w 2 N eff 2 ) 1 / 2 . 2 π λ a = m π + tan 1 [ C 1 ( N eff 2 n c 2 n w 2 N eff 2 ) 1 / 2 ] + tan 1 [ C 2 ( N eff 2 n s 2 n w 2 N eff 2 ) 1 / 2 ] C 1 = C 2 = 1.
T × ( N eff n 1 · sin θ ) = m λ ( m = 0 , ± 1 , ± 2 ) .
n eff = f n 1 2 + ( 1 f ) n 2 2 ,
ω 0 = 1.37 L cos θ .

Metrics