Abstract

We demonstrate how the gradient of the tapering in a tapered fiber can significantly affect the trapping and blueshift of dispersive waves (DWs) by a soliton. By modeling the propagation of a fundamental 10fs soliton through tapered fibers with varying gradients, it is shown that the soliton traps and blueshifts an increased fraction of the energy in its DW when the gradient is decreased. This is quantified by the group-acceleration mismatch between the soliton and DW at the entrance of the taper. These findings have direct implications for the achievable power in the blue edge of a supercontinuum generated in a tapered fiber and explain observations of a lack of power in the blue edge.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. M. Dudley, G. Genty, and S. Coen, Rev. Mod. Phys. 78, 1135 (2006).
    [CrossRef]
  2. J. M. Stone and J. C. Knight, Opt. Express 16, 2670 (2008).
    [CrossRef] [PubMed]
  3. G. Genty, M. Lehtonen, and H. Ludvigsen, Opt. Express 12, 4614 (2004).
    [CrossRef] [PubMed]
  4. A. V. Gorbach and D. V. Skryabin, Phys. Rev. A 76, 053803 (2007).
    [CrossRef]
  5. J. C. Travers and J. R. Taylor, Opt. Lett. 34, 115 (2009).
    [CrossRef] [PubMed]
  6. A. Kudlinski, M. Lelek, B. Barviau, L. Audry, and A. Mussot, Opt. Express 18, 16640 (2010).
    [CrossRef] [PubMed]
  7. T. A. Birks, W. J. Wadsworth, and P. St. J. Russell, Opt. Lett. 25, 1415 (2000).
    [CrossRef]
  8. P. Falk, M. Frosz, and O. Bang, Opt. Express 13, 7535(2005).
    [CrossRef] [PubMed]
  9. S. Leon-Saval, T. Birks, W. Wadsworth, P. St. J. Russell, and M. Mason, Opt. Express 12, 2864 (2004).
    [CrossRef] [PubMed]
  10. S. P. Stark, A. Podlipensky, N. Y. Joly, and P. St. J. Russell, J. Opt. Soc. Am. B 27, 592 (2010).
    [CrossRef]
  11. F. Lu, Y. Deng, and W. H. Knox, Opt. Lett. 30, 1566 (2005).
    [CrossRef] [PubMed]
  12. A. Kudlinski, A. K. George, J. C. Knight, J. C. Travers, A. B. Rulkov, S. V. Popov, and J. R. Taylor, Opt. Express 14, 5715 (2006).
    [CrossRef] [PubMed]
  13. S. Pricking and H. Giessen, Opt. Express 18, 20151 (2010).
    [CrossRef] [PubMed]
  14. J. C. Travers, J. Opt. 12, 113001 (2010).
    [CrossRef]
  15. M. H. Frosz, P. M. Moselund, P. D. Rasmussen, C. L. Thomsen, and O. Bang, Opt. Express 16, 21076 (2008).
    [CrossRef] [PubMed]
  16. J. C. Travers, S. V. Popov, and J. R. Taylor, Opt. Lett. 30, 3132 (2005).
    [CrossRef] [PubMed]
  17. A. C. Judge, O. Bang, B. J. Eggleton, B. T. Kuhlmey, E. C. Mägi, R. Pant, and C. M. de Sterke, J. Opt. Soc. Am. B 26, 2064 (2009).
    [CrossRef]
  18. A. C. Judge, O. Bang, and C. M. de Sterke, J. Opt. Soc. Am. B 27, 2195 (2010).
    [CrossRef]
  19. Z. Chen, A. J. Taylor, and A. Efimov, J. Opt. Soc. Am. B 27, 1022 (2010).
    [CrossRef]
  20. J. C. Travers, M. H. Frosz, and J. M. Dudley, in Supercontinuum Generation in Optical Fibers, J.M.Dudley and J.R.Taylor, eds. (Cambridge University Press, 2010), pp. 32–51.
    [CrossRef]
  21. J. Hult, J. Lightwave Technol. 25, 3770 (2007).
    [CrossRef]
  22. T. Schreiber, T. Andersen, D. Schimpf, J. Limpert, and A. Tünnermann, Opt. Express 13, 9556 (2005).
    [CrossRef] [PubMed]
  23. P. M. Moselund, “Long-pulse supercontinuum light sources,” Ph.D. thesis (Technical University of Denmark, 2009).

2010 (6)

2009 (2)

2008 (2)

2007 (2)

J. Hult, J. Lightwave Technol. 25, 3770 (2007).
[CrossRef]

A. V. Gorbach and D. V. Skryabin, Phys. Rev. A 76, 053803 (2007).
[CrossRef]

2006 (2)

2005 (4)

2004 (2)

2000 (1)

Andersen, T.

Audry, L.

Bang, O.

Barviau, B.

Birks, T.

Birks, T. A.

Chen, Z.

Coen, S.

J. M. Dudley, G. Genty, and S. Coen, Rev. Mod. Phys. 78, 1135 (2006).
[CrossRef]

de Sterke, C. M.

Deng, Y.

Dudley, J. M.

J. M. Dudley, G. Genty, and S. Coen, Rev. Mod. Phys. 78, 1135 (2006).
[CrossRef]

J. C. Travers, M. H. Frosz, and J. M. Dudley, in Supercontinuum Generation in Optical Fibers, J.M.Dudley and J.R.Taylor, eds. (Cambridge University Press, 2010), pp. 32–51.
[CrossRef]

Efimov, A.

Eggleton, B. J.

Falk, P.

Frosz, M.

Frosz, M. H.

M. H. Frosz, P. M. Moselund, P. D. Rasmussen, C. L. Thomsen, and O. Bang, Opt. Express 16, 21076 (2008).
[CrossRef] [PubMed]

J. C. Travers, M. H. Frosz, and J. M. Dudley, in Supercontinuum Generation in Optical Fibers, J.M.Dudley and J.R.Taylor, eds. (Cambridge University Press, 2010), pp. 32–51.
[CrossRef]

Genty, G.

J. M. Dudley, G. Genty, and S. Coen, Rev. Mod. Phys. 78, 1135 (2006).
[CrossRef]

G. Genty, M. Lehtonen, and H. Ludvigsen, Opt. Express 12, 4614 (2004).
[CrossRef] [PubMed]

George, A. K.

Giessen, H.

Gorbach, A. V.

A. V. Gorbach and D. V. Skryabin, Phys. Rev. A 76, 053803 (2007).
[CrossRef]

Hult, J.

Joly, N. Y.

Judge, A. C.

Knight, J. C.

Knox, W. H.

Kudlinski, A.

Kuhlmey, B. T.

Lehtonen, M.

Lelek, M.

Leon-Saval, S.

Limpert, J.

Lu, F.

Ludvigsen, H.

Mägi, E. C.

Mason, M.

Moselund, P. M.

M. H. Frosz, P. M. Moselund, P. D. Rasmussen, C. L. Thomsen, and O. Bang, Opt. Express 16, 21076 (2008).
[CrossRef] [PubMed]

P. M. Moselund, “Long-pulse supercontinuum light sources,” Ph.D. thesis (Technical University of Denmark, 2009).

Mussot, A.

Pant, R.

Podlipensky, A.

Popov, S. V.

Pricking, S.

Rasmussen, P. D.

Rulkov, A. B.

Russell, P. St. J.

Schimpf, D.

Schreiber, T.

Skryabin, D. V.

A. V. Gorbach and D. V. Skryabin, Phys. Rev. A 76, 053803 (2007).
[CrossRef]

Stark, S. P.

Stone, J. M.

Taylor, A. J.

Taylor, J. R.

Thomsen, C. L.

Travers, J. C.

Tünnermann, A.

Wadsworth, W.

Wadsworth, W. J.

J. Lightwave Technol. (1)

J. Opt. (1)

J. C. Travers, J. Opt. 12, 113001 (2010).
[CrossRef]

J. Opt. Soc. Am. B (4)

Opt. Express (9)

Opt. Lett. (4)

Phys. Rev. A (1)

A. V. Gorbach and D. V. Skryabin, Phys. Rev. A 76, 053803 (2007).
[CrossRef]

Rev. Mod. Phys. (1)

J. M. Dudley, G. Genty, and S. Coen, Rev. Mod. Phys. 78, 1135 (2006).
[CrossRef]

Other (2)

J. C. Travers, M. H. Frosz, and J. M. Dudley, in Supercontinuum Generation in Optical Fibers, J.M.Dudley and J.R.Taylor, eds. (Cambridge University Press, 2010), pp. 32–51.
[CrossRef]

P. M. Moselund, “Long-pulse supercontinuum light sources,” Ph.D. thesis (Technical University of Denmark, 2009).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) Dispersion and (b) effective area for fibers with hole-to-pitch ratio d / Λ = 0.79 and varying pitch Λ. The inset in (a) shows the cross section.

Fig. 2
Fig. 2

(a) Spectral evolution of the soliton and DWs through the illustrated taper; the pitch is reduced from 3.7 to 1.85 μm . The dotted line shows the DW wavelength with GVM to the soliton. (b) Spectrogram and spectrum at the taper waist ( 2.5 m ). The spectral components in (a) are visible in (b).

Fig. 3
Fig. 3

Group-velocity curves for fibers with pitch Λ = 3.7 and 1.8 μm . The GVs of the soliton and DW change at different rates in a taper.

Fig. 4
Fig. 4

(a) GAM as a function of taper gradient and soliton wavelength for step size Δ z = 10 mm and pitch Λ = 3.7 μm , (b) GAM for the three fixed wavelengths indicated in (a).

Fig. 5
Fig. 5

Wavelength of (a) the soliton and (b) DW 3 as a function of the gradient. (c) The investigated taper profiles. (d) Energy of DW 3 normalized to the energy at the waist in the taper with the smallest gradient. The dashed and full lines show the values at the taper waist and fiber end, respectively.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

GA sol = GV sol z | λ = λ sol ,
GAM { GV DW ( z 0 + Δ z ) GV sol ( z 0 + Δ z ) } / Δ z .

Metrics