Abstract

We propose the use of subwavelength structures in a waveguide grating to achieve polarization-independent coupling of light between an optical fiber and a silicon-on-insulator (SOI) optical waveguide. The subwavelength structure allows the mode effective indices of the TE and TM modes in the grating section to be precisely engineered. We calculate that coupling efficiency of over 64% is possible using the proposed design for polarization-independent coupling between single-mode optical fibers and SOI nanophotonic waveguides.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Taillaert, W. Bogaerts, P. Bienstman, T. F. Krauss, P. Van Daele, I. Moerman, S. Verstuyft, K. De Mesel, and R. Baets, IEEE J. Quantum Electron. 38, 949 (2002).
    [CrossRef]
  2. D. Taillaert, P. Bienstman, and R. Baets, Opt. Lett. 29, 2749 (2004).
    [CrossRef] [PubMed]
  3. Y. Tang, Z. Wang, L. Wosinski, U. Westergren, and S. He, Opt. Lett. 35, 1290 (2010).
    [CrossRef] [PubMed]
  4. X. Chen, C. Li, C. K. Y. Fung, S. M. G. Lo, and H. K. Tsang, IEEE Photon. Technol. Lett. 22, 1156 (2010).
    [CrossRef]
  5. D. Vermeulen, S. Selvaraja, P. Verheyen, G. Lepage, W. Bogaerts, P. Absil, D. Van Thourhout, and G. Roelkens, Opt. Express 18, 18278 (2010).
    [CrossRef] [PubMed]
  6. R. Halir, P. Cheben, S. Janz, D.-X. Xu, I. Molina-Fernandez, and J. G. Wanguemert-Perez, Opt. Lett. 34, 1408 (2009).
    [CrossRef] [PubMed]
  7. R. Halir, P. Cheben, J. H. Schmid, R. Ma, D. Bedard, S. Janz, D.-X. Xu, A. Densmore, J. Lapointe, and I. Molina-Fernandez, Opt. Lett. 35, 3243 (2010).
    [CrossRef] [PubMed]
  8. W. Bogaerts, D. Taillaert, P. Dumon, D. Van Thourhout, R. Baets, and E. Pluk, Opt. Express 15, 1567 (2007).
    [CrossRef] [PubMed]
  9. D. Taillaert, H. Chong, P. I. Borel, L. H. Frandsen, R. M. De La Rue, and R. Baets, IEEE Photon. Technol. Lett. 15, 1249 (2003).
    [CrossRef]
  10. J. Feng and Z. Zhou, Opt. Lett. 32, 1662 (2007).
    [CrossRef] [PubMed]
  11. X. Chen, C. Li, and H. K. Tsang, Opt. Commun. 283, 2146 (2010).
    [CrossRef]
  12. W. R. Headley, G. T. Reed, S. Howe, A. Liu, and M. Paniccia, Appl. Phys. Lett. 85, 5523 (2004).
    [CrossRef]
  13. S. P. Chan, C. E. Png, S. T. Lim, G. T. Reed, and V. M. N. Passaro, J. Lightwave Technol. 23, 2103 (2005).
    [CrossRef]
  14. S. T. Lim, C. E. Png, E. A. Ong, and Y. L. Ang, Opt. Express 15, 11061 (2007).
    [CrossRef] [PubMed]
  15. S. Shao and Y. Wang, Opt. Lett. 35, 1834 (2010).
    [CrossRef] [PubMed]
  16. X. Chen and H. K. Tsang, IEEE Photon. J. 1, 184 (2009).
    [CrossRef]
  17. L. Liu, M. Pu, K. Yvind, and J. M. Hvam, Appl. Phys. Lett. 96, 051126 (2010).
    [CrossRef]
  18. S. M. Rytov, Sov. Phys. JETP 2, 466 (1956).
  19. D. H. Raguin and G. M. Morris, Appl. Opt. 32, 1154 (1993).
    [CrossRef] [PubMed]

2010 (7)

2009 (2)

2007 (3)

2005 (1)

2004 (2)

D. Taillaert, P. Bienstman, and R. Baets, Opt. Lett. 29, 2749 (2004).
[CrossRef] [PubMed]

W. R. Headley, G. T. Reed, S. Howe, A. Liu, and M. Paniccia, Appl. Phys. Lett. 85, 5523 (2004).
[CrossRef]

2003 (1)

D. Taillaert, H. Chong, P. I. Borel, L. H. Frandsen, R. M. De La Rue, and R. Baets, IEEE Photon. Technol. Lett. 15, 1249 (2003).
[CrossRef]

2002 (1)

D. Taillaert, W. Bogaerts, P. Bienstman, T. F. Krauss, P. Van Daele, I. Moerman, S. Verstuyft, K. De Mesel, and R. Baets, IEEE J. Quantum Electron. 38, 949 (2002).
[CrossRef]

1993 (1)

1956 (1)

S. M. Rytov, Sov. Phys. JETP 2, 466 (1956).

Absil, P.

Ang, Y. L.

Baets, R.

W. Bogaerts, D. Taillaert, P. Dumon, D. Van Thourhout, R. Baets, and E. Pluk, Opt. Express 15, 1567 (2007).
[CrossRef] [PubMed]

D. Taillaert, P. Bienstman, and R. Baets, Opt. Lett. 29, 2749 (2004).
[CrossRef] [PubMed]

D. Taillaert, H. Chong, P. I. Borel, L. H. Frandsen, R. M. De La Rue, and R. Baets, IEEE Photon. Technol. Lett. 15, 1249 (2003).
[CrossRef]

D. Taillaert, W. Bogaerts, P. Bienstman, T. F. Krauss, P. Van Daele, I. Moerman, S. Verstuyft, K. De Mesel, and R. Baets, IEEE J. Quantum Electron. 38, 949 (2002).
[CrossRef]

Bedard, D.

Bienstman, P.

D. Taillaert, P. Bienstman, and R. Baets, Opt. Lett. 29, 2749 (2004).
[CrossRef] [PubMed]

D. Taillaert, W. Bogaerts, P. Bienstman, T. F. Krauss, P. Van Daele, I. Moerman, S. Verstuyft, K. De Mesel, and R. Baets, IEEE J. Quantum Electron. 38, 949 (2002).
[CrossRef]

Bogaerts, W.

Borel, P. I.

D. Taillaert, H. Chong, P. I. Borel, L. H. Frandsen, R. M. De La Rue, and R. Baets, IEEE Photon. Technol. Lett. 15, 1249 (2003).
[CrossRef]

Chan, S. P.

Cheben, P.

Chen, X.

X. Chen, C. Li, C. K. Y. Fung, S. M. G. Lo, and H. K. Tsang, IEEE Photon. Technol. Lett. 22, 1156 (2010).
[CrossRef]

X. Chen, C. Li, and H. K. Tsang, Opt. Commun. 283, 2146 (2010).
[CrossRef]

X. Chen and H. K. Tsang, IEEE Photon. J. 1, 184 (2009).
[CrossRef]

Chong, H.

D. Taillaert, H. Chong, P. I. Borel, L. H. Frandsen, R. M. De La Rue, and R. Baets, IEEE Photon. Technol. Lett. 15, 1249 (2003).
[CrossRef]

De La Rue, R. M.

D. Taillaert, H. Chong, P. I. Borel, L. H. Frandsen, R. M. De La Rue, and R. Baets, IEEE Photon. Technol. Lett. 15, 1249 (2003).
[CrossRef]

De Mesel, K.

D. Taillaert, W. Bogaerts, P. Bienstman, T. F. Krauss, P. Van Daele, I. Moerman, S. Verstuyft, K. De Mesel, and R. Baets, IEEE J. Quantum Electron. 38, 949 (2002).
[CrossRef]

Densmore, A.

Dumon, P.

Feng, J.

Frandsen, L. H.

D. Taillaert, H. Chong, P. I. Borel, L. H. Frandsen, R. M. De La Rue, and R. Baets, IEEE Photon. Technol. Lett. 15, 1249 (2003).
[CrossRef]

Fung, C. K. Y.

X. Chen, C. Li, C. K. Y. Fung, S. M. G. Lo, and H. K. Tsang, IEEE Photon. Technol. Lett. 22, 1156 (2010).
[CrossRef]

Halir, R.

He, S.

Headley, W. R.

W. R. Headley, G. T. Reed, S. Howe, A. Liu, and M. Paniccia, Appl. Phys. Lett. 85, 5523 (2004).
[CrossRef]

Howe, S.

W. R. Headley, G. T. Reed, S. Howe, A. Liu, and M. Paniccia, Appl. Phys. Lett. 85, 5523 (2004).
[CrossRef]

Hvam, J. M.

L. Liu, M. Pu, K. Yvind, and J. M. Hvam, Appl. Phys. Lett. 96, 051126 (2010).
[CrossRef]

Janz, S.

Krauss, T. F.

D. Taillaert, W. Bogaerts, P. Bienstman, T. F. Krauss, P. Van Daele, I. Moerman, S. Verstuyft, K. De Mesel, and R. Baets, IEEE J. Quantum Electron. 38, 949 (2002).
[CrossRef]

Lapointe, J.

Lepage, G.

Li, C.

X. Chen, C. Li, C. K. Y. Fung, S. M. G. Lo, and H. K. Tsang, IEEE Photon. Technol. Lett. 22, 1156 (2010).
[CrossRef]

X. Chen, C. Li, and H. K. Tsang, Opt. Commun. 283, 2146 (2010).
[CrossRef]

Lim, S. T.

Liu, A.

W. R. Headley, G. T. Reed, S. Howe, A. Liu, and M. Paniccia, Appl. Phys. Lett. 85, 5523 (2004).
[CrossRef]

Liu, L.

L. Liu, M. Pu, K. Yvind, and J. M. Hvam, Appl. Phys. Lett. 96, 051126 (2010).
[CrossRef]

Lo, S. M. G.

X. Chen, C. Li, C. K. Y. Fung, S. M. G. Lo, and H. K. Tsang, IEEE Photon. Technol. Lett. 22, 1156 (2010).
[CrossRef]

Ma, R.

Moerman, I.

D. Taillaert, W. Bogaerts, P. Bienstman, T. F. Krauss, P. Van Daele, I. Moerman, S. Verstuyft, K. De Mesel, and R. Baets, IEEE J. Quantum Electron. 38, 949 (2002).
[CrossRef]

Molina-Fernandez, I.

Morris, G. M.

Ong, E. A.

Paniccia, M.

W. R. Headley, G. T. Reed, S. Howe, A. Liu, and M. Paniccia, Appl. Phys. Lett. 85, 5523 (2004).
[CrossRef]

Passaro, V. M. N.

Pluk, E.

Png, C. E.

Pu, M.

L. Liu, M. Pu, K. Yvind, and J. M. Hvam, Appl. Phys. Lett. 96, 051126 (2010).
[CrossRef]

Raguin, D. H.

Reed, G. T.

S. P. Chan, C. E. Png, S. T. Lim, G. T. Reed, and V. M. N. Passaro, J. Lightwave Technol. 23, 2103 (2005).
[CrossRef]

W. R. Headley, G. T. Reed, S. Howe, A. Liu, and M. Paniccia, Appl. Phys. Lett. 85, 5523 (2004).
[CrossRef]

Roelkens, G.

Rytov, S. M.

S. M. Rytov, Sov. Phys. JETP 2, 466 (1956).

Schmid, J. H.

Selvaraja, S.

Shao, S.

Taillaert, D.

W. Bogaerts, D. Taillaert, P. Dumon, D. Van Thourhout, R. Baets, and E. Pluk, Opt. Express 15, 1567 (2007).
[CrossRef] [PubMed]

D. Taillaert, P. Bienstman, and R. Baets, Opt. Lett. 29, 2749 (2004).
[CrossRef] [PubMed]

D. Taillaert, H. Chong, P. I. Borel, L. H. Frandsen, R. M. De La Rue, and R. Baets, IEEE Photon. Technol. Lett. 15, 1249 (2003).
[CrossRef]

D. Taillaert, W. Bogaerts, P. Bienstman, T. F. Krauss, P. Van Daele, I. Moerman, S. Verstuyft, K. De Mesel, and R. Baets, IEEE J. Quantum Electron. 38, 949 (2002).
[CrossRef]

Tang, Y.

Tsang, H. K.

X. Chen, C. Li, and H. K. Tsang, Opt. Commun. 283, 2146 (2010).
[CrossRef]

X. Chen, C. Li, C. K. Y. Fung, S. M. G. Lo, and H. K. Tsang, IEEE Photon. Technol. Lett. 22, 1156 (2010).
[CrossRef]

X. Chen and H. K. Tsang, IEEE Photon. J. 1, 184 (2009).
[CrossRef]

Van Daele, P.

D. Taillaert, W. Bogaerts, P. Bienstman, T. F. Krauss, P. Van Daele, I. Moerman, S. Verstuyft, K. De Mesel, and R. Baets, IEEE J. Quantum Electron. 38, 949 (2002).
[CrossRef]

Van Thourhout, D.

Verheyen, P.

Vermeulen, D.

Verstuyft, S.

D. Taillaert, W. Bogaerts, P. Bienstman, T. F. Krauss, P. Van Daele, I. Moerman, S. Verstuyft, K. De Mesel, and R. Baets, IEEE J. Quantum Electron. 38, 949 (2002).
[CrossRef]

Wang, Y.

Wang, Z.

Wanguemert-Perez, J. G.

Westergren, U.

Wosinski, L.

Xu, D.-X.

Yvind, K.

L. Liu, M. Pu, K. Yvind, and J. M. Hvam, Appl. Phys. Lett. 96, 051126 (2010).
[CrossRef]

Zhou, Z.

Appl. Opt. (1)

Appl. Phys. Lett. (2)

W. R. Headley, G. T. Reed, S. Howe, A. Liu, and M. Paniccia, Appl. Phys. Lett. 85, 5523 (2004).
[CrossRef]

L. Liu, M. Pu, K. Yvind, and J. M. Hvam, Appl. Phys. Lett. 96, 051126 (2010).
[CrossRef]

IEEE J. Quantum Electron. (1)

D. Taillaert, W. Bogaerts, P. Bienstman, T. F. Krauss, P. Van Daele, I. Moerman, S. Verstuyft, K. De Mesel, and R. Baets, IEEE J. Quantum Electron. 38, 949 (2002).
[CrossRef]

IEEE Photon. J. (1)

X. Chen and H. K. Tsang, IEEE Photon. J. 1, 184 (2009).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

X. Chen, C. Li, C. K. Y. Fung, S. M. G. Lo, and H. K. Tsang, IEEE Photon. Technol. Lett. 22, 1156 (2010).
[CrossRef]

D. Taillaert, H. Chong, P. I. Borel, L. H. Frandsen, R. M. De La Rue, and R. Baets, IEEE Photon. Technol. Lett. 15, 1249 (2003).
[CrossRef]

J. Lightwave Technol. (1)

Opt. Commun. (1)

X. Chen, C. Li, and H. K. Tsang, Opt. Commun. 283, 2146 (2010).
[CrossRef]

Opt. Express (3)

Opt. Lett. (6)

Sov. Phys. JETP (1)

S. M. Rytov, Sov. Phys. JETP 2, 466 (1956).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) Three-dimensional schematic illustration of the polarization-independent fiber-chip grating coupler with subwavelength structures. (b) Schematic top view. (c) Schematic side view.

Fig. 2
Fig. 2

(a) Refractive index of the approximated groove for different lateral fill factors, calculated by EMT with zeroth-order and second-order approximation ( Λ y = 400 nm ). (b) 2D FDTD simulation of the subwavelength grating coupler with the TM mode launched into the waveguide.

Fig. 3
Fig. 3

(a) Average effective indices n eff _ avg calculated by 2D FDTD simulations (markers) for various fill factors f x (with f y = 0.3 ). (b) Effective index of the optical mode for the subwavelength structure. Polarization-independent operation is possible only when the n L _ eff for the TE mode is lower than that for the TM mode. (c) Calculated f x and required period ( Λ x ) for polarization-independent grating diffraction at θ = 15 ° ( Λ y = 400 nm ). (d) Coupling strength of the grating for the TE and TM modes for the proposed design with θ = 15 ° .

Fig. 4
Fig. 4

(a) Coupling efficiency for various f y and fiber positions L. The cross-over points for polarization- independent coupling are circles ( λ = 1550 nm , θ = 15 ° , Λ y = 400 nm ). (b) Coupling efficiency for the optimized fiber-chip subwavelength grating coupler. Bottom Bragg reflector is used to enhance the coupling efficiency.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

k o n eff _ avg = k o n c sin θ + q 2 π Λ ,
1 n L _ TE ( 0 ) = [ f y n hole 2 + ( 1 f y ) n Si 2 ] 1 / 2 ,
n L _ TM ( 0 ) = [ n hole 2 f y + n Si 2 ( 1 f y ) ] 1 / 2 ,
n L _ TE ( 2 ) = n L _ TE ( 0 ) [ 1 + π 2 3 R 2 f y 2 ( 1 f y ) 2 ( n hole 2 n Si 2 ) 2 ( n L _ TM ( 0 ) n eff _ TE ) 2 ( n L _ TE ( 0 ) n hole n Si ) 4 ] 1 / 2 ,
n L _ TM ( 2 ) = n L _ TM ( 0 ) [ 1 + π 2 3 R 2 f y 2 ( 1 f y ) 2 ( n hole 2 n Si 2 n eff _ TM n L _ TM ( 0 ) ) 2 ] 1 / 2 ,
n eff _ avg = f x n L _ eff + ( 1 f x ) n H _ eff .

Metrics