Abstract

We present an experiment in which intracavity optical power spectra of a Raman fiber laser are precisely measured both in the forward and in the backward propagation directions near the cavity mirrors. The statistical properties of the intracavity Stokes field are found to be very different before and after reflection on the cavity mirrors. The influence of both the dispersion and the spectral filtering actions of fiber Bragg grating mirrors are discussed.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. A. Babin, D. V. Churkin, A. E. Ismagulov, S. I. Kablukov, and E. V. Podivilov, J. Opt. Soc. Am. B 24, 1729 (2007).
    [Crossref]
  2. S. A. Babin, V. Karalekas, E. V. Podivilov, V. K. Mezentsev, P. Harper, J. D. Ania-Castañón, and S. K. Turitsyn, Phys. Rev. A 77, 033803 (2008).
    [Crossref]
  3. E. G. Turitsyna, G. Falkovich, V. K. Mezentsev, and S. K. Turitsyn, Phys. Rev. A 80, 031804(R) (2009).
    [Crossref]
  4. E. G. Turitsyna, S. K. Turitsyn, and V. K. Mezentsev, Opt. Express 18, 4469 (2010).
    [Crossref] [PubMed]
  5. N. Dalloz, S. Randoux, and P. Suret, Opt. Lett. 35, 2505 (2010).
    [Crossref] [PubMed]
  6. J. Hagen, R. Engelbrecht, O. Welzel, A. Siekiera, and B. Schmauss, IEEE Photonics Technol. Lett. 19, 1759 (2007).
    [Crossref]
  7. D. V. Churkin, S. V. Smirnov, and E. V. Podivilov, Opt. Lett. 35, 3288 (2010).
    [Crossref] [PubMed]
  8. P. Suret and S. Randoux, Opt. Commun. 237, 201 (2004).
    [Crossref]
  9. B. Barviau, S. Randoux, and P. Suret, Opt. Lett. 31, 1696 (2006).
    [Crossref] [PubMed]
  10. T. Erdogan, J. Lightwave Technol. 15, 1277 (1997).
    [Crossref]
  11. A. Picozzi, Opt. Express 15, 9063 (2007).
    [Crossref] [PubMed]

2010 (3)

2009 (1)

E. G. Turitsyna, G. Falkovich, V. K. Mezentsev, and S. K. Turitsyn, Phys. Rev. A 80, 031804(R) (2009).
[Crossref]

2008 (1)

S. A. Babin, V. Karalekas, E. V. Podivilov, V. K. Mezentsev, P. Harper, J. D. Ania-Castañón, and S. K. Turitsyn, Phys. Rev. A 77, 033803 (2008).
[Crossref]

2007 (3)

2006 (1)

2004 (1)

P. Suret and S. Randoux, Opt. Commun. 237, 201 (2004).
[Crossref]

1997 (1)

T. Erdogan, J. Lightwave Technol. 15, 1277 (1997).
[Crossref]

Ania-Castañón, J. D.

S. A. Babin, V. Karalekas, E. V. Podivilov, V. K. Mezentsev, P. Harper, J. D. Ania-Castañón, and S. K. Turitsyn, Phys. Rev. A 77, 033803 (2008).
[Crossref]

Babin, S. A.

S. A. Babin, V. Karalekas, E. V. Podivilov, V. K. Mezentsev, P. Harper, J. D. Ania-Castañón, and S. K. Turitsyn, Phys. Rev. A 77, 033803 (2008).
[Crossref]

S. A. Babin, D. V. Churkin, A. E. Ismagulov, S. I. Kablukov, and E. V. Podivilov, J. Opt. Soc. Am. B 24, 1729 (2007).
[Crossref]

Barviau, B.

Churkin, D. V.

Dalloz, N.

Engelbrecht, R.

J. Hagen, R. Engelbrecht, O. Welzel, A. Siekiera, and B. Schmauss, IEEE Photonics Technol. Lett. 19, 1759 (2007).
[Crossref]

Erdogan, T.

T. Erdogan, J. Lightwave Technol. 15, 1277 (1997).
[Crossref]

Falkovich, G.

E. G. Turitsyna, G. Falkovich, V. K. Mezentsev, and S. K. Turitsyn, Phys. Rev. A 80, 031804(R) (2009).
[Crossref]

Hagen, J.

J. Hagen, R. Engelbrecht, O. Welzel, A. Siekiera, and B. Schmauss, IEEE Photonics Technol. Lett. 19, 1759 (2007).
[Crossref]

Harper, P.

S. A. Babin, V. Karalekas, E. V. Podivilov, V. K. Mezentsev, P. Harper, J. D. Ania-Castañón, and S. K. Turitsyn, Phys. Rev. A 77, 033803 (2008).
[Crossref]

Ismagulov, A. E.

Kablukov, S. I.

Karalekas, V.

S. A. Babin, V. Karalekas, E. V. Podivilov, V. K. Mezentsev, P. Harper, J. D. Ania-Castañón, and S. K. Turitsyn, Phys. Rev. A 77, 033803 (2008).
[Crossref]

Mezentsev, V. K.

E. G. Turitsyna, S. K. Turitsyn, and V. K. Mezentsev, Opt. Express 18, 4469 (2010).
[Crossref] [PubMed]

E. G. Turitsyna, G. Falkovich, V. K. Mezentsev, and S. K. Turitsyn, Phys. Rev. A 80, 031804(R) (2009).
[Crossref]

S. A. Babin, V. Karalekas, E. V. Podivilov, V. K. Mezentsev, P. Harper, J. D. Ania-Castañón, and S. K. Turitsyn, Phys. Rev. A 77, 033803 (2008).
[Crossref]

Picozzi, A.

Podivilov, E. V.

Randoux, S.

Schmauss, B.

J. Hagen, R. Engelbrecht, O. Welzel, A. Siekiera, and B. Schmauss, IEEE Photonics Technol. Lett. 19, 1759 (2007).
[Crossref]

Siekiera, A.

J. Hagen, R. Engelbrecht, O. Welzel, A. Siekiera, and B. Schmauss, IEEE Photonics Technol. Lett. 19, 1759 (2007).
[Crossref]

Smirnov, S. V.

Suret, P.

Turitsyn, S. K.

E. G. Turitsyna, S. K. Turitsyn, and V. K. Mezentsev, Opt. Express 18, 4469 (2010).
[Crossref] [PubMed]

E. G. Turitsyna, G. Falkovich, V. K. Mezentsev, and S. K. Turitsyn, Phys. Rev. A 80, 031804(R) (2009).
[Crossref]

S. A. Babin, V. Karalekas, E. V. Podivilov, V. K. Mezentsev, P. Harper, J. D. Ania-Castañón, and S. K. Turitsyn, Phys. Rev. A 77, 033803 (2008).
[Crossref]

Turitsyna, E. G.

E. G. Turitsyna, S. K. Turitsyn, and V. K. Mezentsev, Opt. Express 18, 4469 (2010).
[Crossref] [PubMed]

E. G. Turitsyna, G. Falkovich, V. K. Mezentsev, and S. K. Turitsyn, Phys. Rev. A 80, 031804(R) (2009).
[Crossref]

Welzel, O.

J. Hagen, R. Engelbrecht, O. Welzel, A. Siekiera, and B. Schmauss, IEEE Photonics Technol. Lett. 19, 1759 (2007).
[Crossref]

IEEE Photonics Technol. Lett. (1)

J. Hagen, R. Engelbrecht, O. Welzel, A. Siekiera, and B. Schmauss, IEEE Photonics Technol. Lett. 19, 1759 (2007).
[Crossref]

J. Lightwave Technol. (1)

T. Erdogan, J. Lightwave Technol. 15, 1277 (1997).
[Crossref]

J. Opt. Soc. Am. B (1)

Opt. Commun. (1)

P. Suret and S. Randoux, Opt. Commun. 237, 201 (2004).
[Crossref]

Opt. Express (2)

Opt. Lett. (3)

Phys. Rev. A (2)

S. A. Babin, V. Karalekas, E. V. Podivilov, V. K. Mezentsev, P. Harper, J. D. Ania-Castañón, and S. K. Turitsyn, Phys. Rev. A 77, 033803 (2008).
[Crossref]

E. G. Turitsyna, G. Falkovich, V. K. Mezentsev, and S. K. Turitsyn, Phys. Rev. A 80, 031804(R) (2009).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Experimental setup. HWP, half-wave plate; WDM, wavelength-dense multiplexer; PC, polarization controller. P 1 and P 2 are the powers of the forward-propagating pump wave near FBG1 and FBG2, respectively. S 1 , 2 + / ( λ ) are the spectral power densities of forward-propagating (+) and backward- propagating (−) intracavity Stokes light near FBG1 and FBG2.

Fig. 2
Fig. 2

(a) and (b) Experiments at P 1 3.6 W 10 P Th . S 2 and S 1 + are the spectra of Stokes light reflected by FBG2 and FBG1, respectively, and S 2 + and S 1 are respectively the spectra of forward-propagating and backward-propagating Stokes light incident on FBG2 and FBG1, respectively. (c) and (d): Same as (a) and (b) but from numerical simulations made with the param eters g = 12.3 dB / km / W , α s = 0.8 dB / km , β 2 = 15.7 ps 2 / km , and γ = 6.3 km 1 W 1 .

Fig. 3
Fig. 3

Numerical simulations. PDFs of the real part, Re [ A s ± ( t ) ] , of the intracavity field near (a) FBG2 and (b) FBG1. PDFs of the real part, Re [ A out ± ( t ) ] , of the field at the output of the cavity near (c) FBG2 and (d) FBG1.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

± A s ± ( z , t ) z + i β 2 2 2 A s ± ( z , t ) t 2 = α s 2 A s ± ( z , t ) + g 2 P ( z ) A s ± ( z , t ) + i γ | A s ± | 2 A s ± .

Metrics