Abstract

We demonstrate a compact middle-wave IR (MWIR) Fabry–Perot (FP) interferometer by replacing the traditional distributed Bragg reflectors consisting of thick multilayer films with two identical metallic subwavelength gratings. The transmission efficiency, resonance peak position, and finesse of the FP interferometer can be controlled by tuning the structural parameters. The performance of the MWIR FP interferometer is verified by experiment, which shows its potential application as, for example, narrowband MWIR filter for gas detection.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. Fabry and A. Perot, Ann. Chim. Phys. 16, 115 (1899).
  2. N. Neumann, M. Ebermann, K. Hiller, and S. Kurth, Proc. SPIE 6466, 646606 (2007).
  3. S. Ura, T. Asada, S. Yamaguchi, K. Nishio, and A. Horii, Opt. Express 14, 7057 (2006).
    [PubMed]
  4. X. H. Hu, M. Li, Z. Ye, W. Y. Leung, K. M. Ho, and S. Y. Lin, Appl. Phys. Lett. 93, 241108 (2008).
  5. N. M. Lyndin, O. Parriaux, and A. V. Tishchenko, J. Opt. Soc. Am. A 24, 3781 (2007).
  6. S. Astilean, P. Lalanne, and M. Palamaru, Opt. Commun. 175, 265 (2000).
  7. P. Lalanne, J. P. Hugonin, S. Astilean, M. Palamaru, and K. D. Möller, J. Opt. A 2, 48 (2000).
  8. I. Richter, P. C. Sun, and Y. Fainman, Appl. Opt. 34, 2421 (1995).
    [PubMed]
  9. J. T. Shen, P. B. Catrysse, and S. H. Fan, Phys. Rev. Lett. 94, 197401 (2005).
    [PubMed]
  10. C. Cheng, J. Chen, Q. Y. Wu, F. F. Ren, J. Xu, Y. X. Fan, and H. T. Wang, Appl. Phys. Lett. 91, 011111 (2007).
  11. O. Masato, K. Hisao, H. Yoshihiko, Y. Kazuya, and Y. Tsutom, Appl. Opt. 43, 5137 (2004).
  12. Y. L. Ruan, W. T. Li, R. Jarvis, N. Madsen, A. Rode, and L. D. Barry, Opt. Express 12, 5140 (2004).
    [PubMed]
  13. E. D. Palik, Handbook of Optical Constants of Solids(Academic, 1998).
  14. S. Rommeluère, N. Guérineau, R. Haidar, J. Deschamps, E. De Borniol, A. Million, J. P. Chamonal, and G. Destefanis, Opt. Lett. 33, 1062 (2008).
    [PubMed]

2008 (2)

2007 (3)

N. M. Lyndin, O. Parriaux, and A. V. Tishchenko, J. Opt. Soc. Am. A 24, 3781 (2007).

N. Neumann, M. Ebermann, K. Hiller, and S. Kurth, Proc. SPIE 6466, 646606 (2007).

C. Cheng, J. Chen, Q. Y. Wu, F. F. Ren, J. Xu, Y. X. Fan, and H. T. Wang, Appl. Phys. Lett. 91, 011111 (2007).

2006 (1)

2005 (1)

J. T. Shen, P. B. Catrysse, and S. H. Fan, Phys. Rev. Lett. 94, 197401 (2005).
[PubMed]

2004 (2)

2000 (2)

S. Astilean, P. Lalanne, and M. Palamaru, Opt. Commun. 175, 265 (2000).

P. Lalanne, J. P. Hugonin, S. Astilean, M. Palamaru, and K. D. Möller, J. Opt. A 2, 48 (2000).

1995 (1)

1899 (1)

C. Fabry and A. Perot, Ann. Chim. Phys. 16, 115 (1899).

Asada, T.

Astilean, S.

S. Astilean, P. Lalanne, and M. Palamaru, Opt. Commun. 175, 265 (2000).

P. Lalanne, J. P. Hugonin, S. Astilean, M. Palamaru, and K. D. Möller, J. Opt. A 2, 48 (2000).

Barry, L. D.

Catrysse, P. B.

J. T. Shen, P. B. Catrysse, and S. H. Fan, Phys. Rev. Lett. 94, 197401 (2005).
[PubMed]

Chamonal, J. P.

Chen, J.

C. Cheng, J. Chen, Q. Y. Wu, F. F. Ren, J. Xu, Y. X. Fan, and H. T. Wang, Appl. Phys. Lett. 91, 011111 (2007).

Cheng, C.

C. Cheng, J. Chen, Q. Y. Wu, F. F. Ren, J. Xu, Y. X. Fan, and H. T. Wang, Appl. Phys. Lett. 91, 011111 (2007).

De Borniol, E.

Deschamps, J.

Destefanis, G.

Ebermann, M.

N. Neumann, M. Ebermann, K. Hiller, and S. Kurth, Proc. SPIE 6466, 646606 (2007).

Fabry, C.

C. Fabry and A. Perot, Ann. Chim. Phys. 16, 115 (1899).

Fainman, Y.

Fan, S. H.

J. T. Shen, P. B. Catrysse, and S. H. Fan, Phys. Rev. Lett. 94, 197401 (2005).
[PubMed]

Fan, Y. X.

C. Cheng, J. Chen, Q. Y. Wu, F. F. Ren, J. Xu, Y. X. Fan, and H. T. Wang, Appl. Phys. Lett. 91, 011111 (2007).

Guérineau, N.

Haidar, R.

Hiller, K.

N. Neumann, M. Ebermann, K. Hiller, and S. Kurth, Proc. SPIE 6466, 646606 (2007).

Hisao, K.

Ho, K. M.

X. H. Hu, M. Li, Z. Ye, W. Y. Leung, K. M. Ho, and S. Y. Lin, Appl. Phys. Lett. 93, 241108 (2008).

Horii, A.

Hu, X. H.

X. H. Hu, M. Li, Z. Ye, W. Y. Leung, K. M. Ho, and S. Y. Lin, Appl. Phys. Lett. 93, 241108 (2008).

Hugonin, J. P.

P. Lalanne, J. P. Hugonin, S. Astilean, M. Palamaru, and K. D. Möller, J. Opt. A 2, 48 (2000).

Jarvis, R.

Kazuya, Y.

Kurth, S.

N. Neumann, M. Ebermann, K. Hiller, and S. Kurth, Proc. SPIE 6466, 646606 (2007).

Lalanne, P.

P. Lalanne, J. P. Hugonin, S. Astilean, M. Palamaru, and K. D. Möller, J. Opt. A 2, 48 (2000).

S. Astilean, P. Lalanne, and M. Palamaru, Opt. Commun. 175, 265 (2000).

Leung, W. Y.

X. H. Hu, M. Li, Z. Ye, W. Y. Leung, K. M. Ho, and S. Y. Lin, Appl. Phys. Lett. 93, 241108 (2008).

Li, M.

X. H. Hu, M. Li, Z. Ye, W. Y. Leung, K. M. Ho, and S. Y. Lin, Appl. Phys. Lett. 93, 241108 (2008).

Li, W. T.

Lin, S. Y.

X. H. Hu, M. Li, Z. Ye, W. Y. Leung, K. M. Ho, and S. Y. Lin, Appl. Phys. Lett. 93, 241108 (2008).

Lyndin, N. M.

Madsen, N.

Masato, O.

Million, A.

Möller, K. D.

P. Lalanne, J. P. Hugonin, S. Astilean, M. Palamaru, and K. D. Möller, J. Opt. A 2, 48 (2000).

Neumann, N.

N. Neumann, M. Ebermann, K. Hiller, and S. Kurth, Proc. SPIE 6466, 646606 (2007).

Nishio, K.

Palamaru, M.

S. Astilean, P. Lalanne, and M. Palamaru, Opt. Commun. 175, 265 (2000).

P. Lalanne, J. P. Hugonin, S. Astilean, M. Palamaru, and K. D. Möller, J. Opt. A 2, 48 (2000).

Palik, E. D.

E. D. Palik, Handbook of Optical Constants of Solids(Academic, 1998).

Parriaux, O.

Perot, A.

C. Fabry and A. Perot, Ann. Chim. Phys. 16, 115 (1899).

Ren, F. F.

C. Cheng, J. Chen, Q. Y. Wu, F. F. Ren, J. Xu, Y. X. Fan, and H. T. Wang, Appl. Phys. Lett. 91, 011111 (2007).

Richter, I.

Rode, A.

Rommeluère, S.

Ruan, Y. L.

Shen, J. T.

J. T. Shen, P. B. Catrysse, and S. H. Fan, Phys. Rev. Lett. 94, 197401 (2005).
[PubMed]

Sun, P. C.

Tishchenko, A. V.

Tsutom, Y.

Ura, S.

Wang, H. T.

C. Cheng, J. Chen, Q. Y. Wu, F. F. Ren, J. Xu, Y. X. Fan, and H. T. Wang, Appl. Phys. Lett. 91, 011111 (2007).

Wu, Q. Y.

C. Cheng, J. Chen, Q. Y. Wu, F. F. Ren, J. Xu, Y. X. Fan, and H. T. Wang, Appl. Phys. Lett. 91, 011111 (2007).

Xu, J.

C. Cheng, J. Chen, Q. Y. Wu, F. F. Ren, J. Xu, Y. X. Fan, and H. T. Wang, Appl. Phys. Lett. 91, 011111 (2007).

Yamaguchi, S.

Ye, Z.

X. H. Hu, M. Li, Z. Ye, W. Y. Leung, K. M. Ho, and S. Y. Lin, Appl. Phys. Lett. 93, 241108 (2008).

Yoshihiko, H.

Ann. Chim. Phys. (1)

C. Fabry and A. Perot, Ann. Chim. Phys. 16, 115 (1899).

Appl. Opt. (2)

Appl. Phys. Lett. (2)

X. H. Hu, M. Li, Z. Ye, W. Y. Leung, K. M. Ho, and S. Y. Lin, Appl. Phys. Lett. 93, 241108 (2008).

C. Cheng, J. Chen, Q. Y. Wu, F. F. Ren, J. Xu, Y. X. Fan, and H. T. Wang, Appl. Phys. Lett. 91, 011111 (2007).

J. Opt. A (1)

P. Lalanne, J. P. Hugonin, S. Astilean, M. Palamaru, and K. D. Möller, J. Opt. A 2, 48 (2000).

J. Opt. Soc. Am. A (1)

Opt. Commun. (1)

S. Astilean, P. Lalanne, and M. Palamaru, Opt. Commun. 175, 265 (2000).

Opt. Express (2)

Opt. Lett. (1)

Phys. Rev. Lett. (1)

J. T. Shen, P. B. Catrysse, and S. H. Fan, Phys. Rev. Lett. 94, 197401 (2005).
[PubMed]

Proc. SPIE (1)

N. Neumann, M. Ebermann, K. Hiller, and S. Kurth, Proc. SPIE 6466, 646606 (2007).

Other (1)

E. D. Palik, Handbook of Optical Constants of Solids(Academic, 1998).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

(a) Schematic of the proposed FP interferometer. (b) Calculated transmittance spectra of a double-grating FP interferometer with d = 600 nm , h = 200 nm , w = 60 nm , and l = 2.5 μm . The complex refractive indices of Al for the wavelengths of 2 μm , 3.5 μm , and 5 μm are 1.5 + 23.7 i , 4.6 + 40.9 i , and 9.1 + 57.3 i , respectively. The refractive indices of dielectrics TiO 2 and SiO 2 for the MWIR wavelengths are 2.71 and 1.43, respectively. (c) and (d) Distributions of magnetic field amplitude inside the FP cavity at a resonant wavelength 3.31 μm and an off-resonant wavelength 3 μm , respectively. The gray color pillars stand for metallic ridges.

Fig. 2
Fig. 2

(a) Real and (b) imaginary part of the effective refractive index of an Al grating with d = 600 nm , h = 200 nm , and w = 30 , 60, 120 nm . Calculated transmittance spectra of the FP interferometer with respect to different values of (c) w and (d) h.

Fig. 3
Fig. 3

(a) Side view SEM-image of a fabricated FP interferometer sample. The insets show the top view of the top and bottom gratings. (b) Experimentally measured and numerically calculated transmittance spectra of the FP interferometer sample under normal incidence.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

n l = N · λ N / 2 ,
T = [ 1 A / ( 1 R ) ] 2 / [ 1 + F sin 2 ( δ / 2 ) ]
F = 4 R / ( 1 R ) 2
δ = 4 π ( n eff h + n l ) / λ 2 φ ,

Metrics