Abstract

The optical properties and the theoretical prediction of color optical shutter with dye-doped polymer network liquid crystal (PNLC) were investigated. The view-angle dependence of reflectance according to the bias conditions showed distinctive characteristics, which could be explained from the effects of dye absorption and path length. It was also shown that the thickness dependence of reflectance was strongly influenced by the light-scattering coefficient. Our experimental results matched up well with the theoretical prediction based on the light scattering of liquid crystals in polymer network and the absorption of dichroic dye. This work indicates potential to improve the optical device using dye-doped liquid crystal-polymer composite.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. J. Liu, X. W. Sun, P. Shum, and X. J. Yin, Opt. Express 14, 5634 (2006).
    [CrossRef] [PubMed]
  2. H. Ren, Y.-H. Fan, and S.-T. Wu, Appl. Phys. Lett. 83, 1515 (2003).
    [CrossRef]
  3. M. J. Escuti, J. Qi, and G. P. Crawford, Opt. Lett. 28, 522 (2003).
    [CrossRef] [PubMed]
  4. S.-T. Wu, M. S. Li, and A. Y.-G. Fuh, Appl. Phys. Lett. 91, 251117 (2007).
    [CrossRef]
  5. P. Nolan, M. Tillin, D. Coates, E. Ginter, E. Lueder, and T. Kallfass, Eurodisplay ’93, Proceedings of the International Display Research Conference (Society for Information Display, 1993), pp. 397–400.
  6. G. Cipparrone, A. Mazzulla, and F. Simoni, Opt. Lett. 23, 1505 (1998).
    [CrossRef]
  7. Y.-H. Lin, J.-M. Yang, Y.-R. Lin, S.-C. Jeng, and C.-C. Liao, Opt. Express 16, 1777 (2008).
    [CrossRef] [PubMed]
  8. Y. J. Liu, Y. B. Zheng, J. Shi, H. Huang, T. R. Walker, and T. J. Huang, Opt. Lett. 34, 2351 (2009).
    [CrossRef] [PubMed]
  9. C.-R. Lee, S.-H. Lin, C.-H. Guo, S.-H. Chang, T.-S. Mo, and S.-C. Chu, Opt. Express 18, 2406 (2010).
    [CrossRef] [PubMed]
  10. S. Zumer, Phys. Rev. A 37, 4006 (1988).
    [CrossRef] [PubMed]
  11. S. Zumer and J. W. Doane, Phys. Rev. A 34, 3373 (1986).
    [CrossRef] [PubMed]
  12. F. Bloisi, C. Ruocchio, P. Terrecuso, and L. Vicari, Opt. Lett. 21, 95 (1996).
    [CrossRef] [PubMed]
  13. Y.-H. Fan, H. Ren, X. Liang, Y.-H. Lin, and S.-T. Wu, Appl. Phys. Lett. 85, 2451 (2004).
    [CrossRef]
  14. M. Born and E. Wolf, Principles of Optics (Cambridge University, 1999).

2010 (1)

2009 (1)

2008 (1)

2007 (1)

S.-T. Wu, M. S. Li, and A. Y.-G. Fuh, Appl. Phys. Lett. 91, 251117 (2007).
[CrossRef]

2006 (1)

2004 (1)

Y.-H. Fan, H. Ren, X. Liang, Y.-H. Lin, and S.-T. Wu, Appl. Phys. Lett. 85, 2451 (2004).
[CrossRef]

2003 (2)

H. Ren, Y.-H. Fan, and S.-T. Wu, Appl. Phys. Lett. 83, 1515 (2003).
[CrossRef]

M. J. Escuti, J. Qi, and G. P. Crawford, Opt. Lett. 28, 522 (2003).
[CrossRef] [PubMed]

1998 (1)

1996 (1)

1988 (1)

S. Zumer, Phys. Rev. A 37, 4006 (1988).
[CrossRef] [PubMed]

1986 (1)

S. Zumer and J. W. Doane, Phys. Rev. A 34, 3373 (1986).
[CrossRef] [PubMed]

Bloisi, F.

Born, M.

M. Born and E. Wolf, Principles of Optics (Cambridge University, 1999).

Chang, S.-H.

Chu, S.-C.

Cipparrone, G.

Coates, D.

P. Nolan, M. Tillin, D. Coates, E. Ginter, E. Lueder, and T. Kallfass, Eurodisplay ’93, Proceedings of the International Display Research Conference (Society for Information Display, 1993), pp. 397–400.

Crawford, G. P.

Doane, J. W.

S. Zumer and J. W. Doane, Phys. Rev. A 34, 3373 (1986).
[CrossRef] [PubMed]

Escuti, M. J.

Fan, Y.-H.

Y.-H. Fan, H. Ren, X. Liang, Y.-H. Lin, and S.-T. Wu, Appl. Phys. Lett. 85, 2451 (2004).
[CrossRef]

H. Ren, Y.-H. Fan, and S.-T. Wu, Appl. Phys. Lett. 83, 1515 (2003).
[CrossRef]

Fuh, A. Y.-G.

S.-T. Wu, M. S. Li, and A. Y.-G. Fuh, Appl. Phys. Lett. 91, 251117 (2007).
[CrossRef]

Ginter, E.

P. Nolan, M. Tillin, D. Coates, E. Ginter, E. Lueder, and T. Kallfass, Eurodisplay ’93, Proceedings of the International Display Research Conference (Society for Information Display, 1993), pp. 397–400.

Guo, C.-H.

Huang, H.

Huang, T. J.

Jeng, S.-C.

Kallfass, T.

P. Nolan, M. Tillin, D. Coates, E. Ginter, E. Lueder, and T. Kallfass, Eurodisplay ’93, Proceedings of the International Display Research Conference (Society for Information Display, 1993), pp. 397–400.

Lee, C.-R.

Li, M. S.

S.-T. Wu, M. S. Li, and A. Y.-G. Fuh, Appl. Phys. Lett. 91, 251117 (2007).
[CrossRef]

Liang, X.

Y.-H. Fan, H. Ren, X. Liang, Y.-H. Lin, and S.-T. Wu, Appl. Phys. Lett. 85, 2451 (2004).
[CrossRef]

Liao, C.-C.

Lin, S.-H.

Lin, Y.-H.

Y.-H. Lin, J.-M. Yang, Y.-R. Lin, S.-C. Jeng, and C.-C. Liao, Opt. Express 16, 1777 (2008).
[CrossRef] [PubMed]

Y.-H. Fan, H. Ren, X. Liang, Y.-H. Lin, and S.-T. Wu, Appl. Phys. Lett. 85, 2451 (2004).
[CrossRef]

Lin, Y.-R.

Liu, Y. J.

Lueder, E.

P. Nolan, M. Tillin, D. Coates, E. Ginter, E. Lueder, and T. Kallfass, Eurodisplay ’93, Proceedings of the International Display Research Conference (Society for Information Display, 1993), pp. 397–400.

Mazzulla, A.

Mo, T.-S.

Nolan, P.

P. Nolan, M. Tillin, D. Coates, E. Ginter, E. Lueder, and T. Kallfass, Eurodisplay ’93, Proceedings of the International Display Research Conference (Society for Information Display, 1993), pp. 397–400.

Qi, J.

Ren, H.

Y.-H. Fan, H. Ren, X. Liang, Y.-H. Lin, and S.-T. Wu, Appl. Phys. Lett. 85, 2451 (2004).
[CrossRef]

H. Ren, Y.-H. Fan, and S.-T. Wu, Appl. Phys. Lett. 83, 1515 (2003).
[CrossRef]

Ruocchio, C.

Shi, J.

Shum, P.

Simoni, F.

Sun, X. W.

Terrecuso, P.

Tillin, M.

P. Nolan, M. Tillin, D. Coates, E. Ginter, E. Lueder, and T. Kallfass, Eurodisplay ’93, Proceedings of the International Display Research Conference (Society for Information Display, 1993), pp. 397–400.

Vicari, L.

Walker, T. R.

Wolf, E.

M. Born and E. Wolf, Principles of Optics (Cambridge University, 1999).

Wu, S.-T.

S.-T. Wu, M. S. Li, and A. Y.-G. Fuh, Appl. Phys. Lett. 91, 251117 (2007).
[CrossRef]

Y.-H. Fan, H. Ren, X. Liang, Y.-H. Lin, and S.-T. Wu, Appl. Phys. Lett. 85, 2451 (2004).
[CrossRef]

H. Ren, Y.-H. Fan, and S.-T. Wu, Appl. Phys. Lett. 83, 1515 (2003).
[CrossRef]

Yang, J.-M.

Yin, X. J.

Zheng, Y. B.

Zumer, S.

S. Zumer, Phys. Rev. A 37, 4006 (1988).
[CrossRef] [PubMed]

S. Zumer and J. W. Doane, Phys. Rev. A 34, 3373 (1986).
[CrossRef] [PubMed]

Appl. Phys. Lett. (3)

H. Ren, Y.-H. Fan, and S.-T. Wu, Appl. Phys. Lett. 83, 1515 (2003).
[CrossRef]

S.-T. Wu, M. S. Li, and A. Y.-G. Fuh, Appl. Phys. Lett. 91, 251117 (2007).
[CrossRef]

Y.-H. Fan, H. Ren, X. Liang, Y.-H. Lin, and S.-T. Wu, Appl. Phys. Lett. 85, 2451 (2004).
[CrossRef]

Opt. Express (3)

Opt. Lett. (4)

Phys. Rev. A (2)

S. Zumer, Phys. Rev. A 37, 4006 (1988).
[CrossRef] [PubMed]

S. Zumer and J. W. Doane, Phys. Rev. A 34, 3373 (1986).
[CrossRef] [PubMed]

Other (2)

M. Born and E. Wolf, Principles of Optics (Cambridge University, 1999).

P. Nolan, M. Tillin, D. Coates, E. Ginter, E. Lueder, and T. Kallfass, Eurodisplay ’93, Proceedings of the International Display Research Conference (Society for Information Display, 1993), pp. 397–400.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Operation principle of (a) general PNLC with scattering and transparent state and (b) dye-doped PNLC with absorption and transparent state. (c) Image of various color dye-doped PNLC samples.

Fig. 2
Fig. 2

Measured reflectance of (a) general PNLC and (b) dye-doped PNLC with respect to the view angle in the reflective type. (c) Measured reflectance with respect to the azimuthal rotation of the devices.

Fig. 3
Fig. 3

Comparison of the experimentally measured reflectance (filled circles) with the calculated value (dashed curve) in the cases of (a) no applied voltage and (b) applied voltage. Insets show schematics of interaction between dyes and a light. The bars indicate path length and arcs indicate interaction angle.

Fig. 4
Fig. 4

Comparison of the experimentally measured reflectance (filled circles) with the calculated value (dashed curve) in the cases of (a) no applied voltage and (b) applied voltage. The calculated reflectance with the thickness from 10 to 40 μm and dye concentration from 0 to 1   wt. % is shown in insets.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

R ( θ ) = R o ( θ ) T g ( 0 ) T g ( θ p ) exp [ ( σ ( 0 ) + c α ( 0 ) ) d ] × exp [ ( σ ( θ p ) + c α ( θ p ) ) d / cos θ p ] .
R off ( θ ) = 1 2 R o ( θ ) T ( 0 ) ( T | | ( θ p ) + T ( θ p ) ) × exp [ ( σ off + c α off ) ( 1 + 1 cos θ p ) d ] ,
R on ( θ ) = 1 2 R o ( θ ) T ( 0 ) exp [ ( σ on , | | + c α | | ) d ] × ( T | | ( θ p ) exp [ ( σ on , | | ( θ p ) + c α | | ) d / cos θ p ] + T ( θ p ) exp [ σ on , d / cos θ p ] × ( cos 2 θ p exp [ c α | | d / cos θ p ] + sin 2 θ p exp [ c α d / cos θ p ] ) ) .

Metrics