Abstract

We report on a nonlinear mirror (NLM) scheme that enables, for the first time to the best of our best knowledge, tunable mode locking of a Cr2+:ZnSe laser in the picosecond regime. The NLM—used as the output coupler of the laser cavity—consists of a periodically poled lithium niobate (PPLN) crystal with a fan-out grating coupled with a dichroic mirror and a wedged dispersive YAG plate. The Cr2+:ZnSe laser, pumped by a CW thulium-doped fiber laser, delivers 85ps pulses at a repetition rate of 220MHz with a 300mW average power. Thanks to the use of a fan-out PPLN crystal, we benefit from the wide tunability of the Cr2+:ZnSe laser and achieve mode locking over the whole 2.442.55μm range while maintaining a narrow-linewidth emission suitable for time-resolved nonlinear spectroscopy applications.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (5)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription