Abstract

We demonstrate a photonic chip-based all-optical exclusive-OR (XOR) gate for phase-encoded optical signals via four-wave mixing in a highly nonlinear, dispersion-engineered chalcogenide (As2S3) planar waveguide. We achieve error-free, XOR operation for 40Gbit/s differential phase shift keying (DPSK) optical signals with no power penalty. The effectiveness and broad bandwidth operation of our approach is highlighted by implementing an XOR gate for 160Gbit/s DPSK signals.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. E. Willner, O. F. Yilmaz, J. Wang, X. Wu, A. Bogoni, L. Zhang, and S. R. Nuccio, IEEE J. Sel. Top. Quantum Electron. PP, 1 (2010).
  2. T. D. Vo, H. Hu, M. Galili, E. Palushani, J. Xu, L. K. Oxenløwe, S. J. Madden, D.-Y. Choi, D. A. P. Bulla, M. D. Pelusi, J. Schröder, B. Luther-Davies, and B. J. Eggleton, Opt. Express 18, 17252 (2010).
    [CrossRef] [PubMed]
  3. L. K. Oxenløwe, F. Gómez-Agis, C. Ware, S. Kurimura, H. C. H. Mulvad, M. Galili, H. Nakajima, J. Ichikawa, D. Erasme, A. T. Clausen, and Palle Jeppesen, J. Lightwave Technol. 27, 205 (2009).
    [CrossRef]
  4. R. Pant, T. D. Vo, C. Xiong, M. D. Pelusi, S. Madden, B. Luther-Davies, and B. J. Eggleton, Opt. Lett. 36, 298(2011).
    [CrossRef] [PubMed]
  5. Y. J. Jung, C. W. Son, S. Lee, S. Gil, H. S. Kim, and N. Park, Opt. Quantum Electron. 40, 425 (2008).
    [CrossRef]
  6. J. Wang, Q. Sun, and J. Sun, Opt. Express 17, 12555 (2009).
    [CrossRef] [PubMed]
  7. N. Deng, K. Chan, C.-K. Chan, and L.-K. Chen, IEEE J. Sel. Top. Quantum Electron. 12, 702 (2006).
    [CrossRef]
  8. J. Wang, J. Sun, X. Zhang, D. Huang, and M. M. Fejer, Opt. Lett. 33, 1419 (2008).
    [CrossRef] [PubMed]
  9. G. P. Agrawal, Nonlinear Fiber Optics, 3rd ed. (Academic Press, 2001).
  10. V. R. Almeida, R. R. Panepucci, and M. Lipson, Opt. Lett. 28, 1302 (2003).
    [CrossRef] [PubMed]

2011 (1)

2010 (2)

2009 (2)

2008 (2)

J. Wang, J. Sun, X. Zhang, D. Huang, and M. M. Fejer, Opt. Lett. 33, 1419 (2008).
[CrossRef] [PubMed]

Y. J. Jung, C. W. Son, S. Lee, S. Gil, H. S. Kim, and N. Park, Opt. Quantum Electron. 40, 425 (2008).
[CrossRef]

2006 (1)

N. Deng, K. Chan, C.-K. Chan, and L.-K. Chen, IEEE J. Sel. Top. Quantum Electron. 12, 702 (2006).
[CrossRef]

2003 (1)

Agrawal, G. P.

G. P. Agrawal, Nonlinear Fiber Optics, 3rd ed. (Academic Press, 2001).

Almeida, V. R.

Bogoni, A.

A. E. Willner, O. F. Yilmaz, J. Wang, X. Wu, A. Bogoni, L. Zhang, and S. R. Nuccio, IEEE J. Sel. Top. Quantum Electron. PP, 1 (2010).

Bulla, D. A. P.

Chan, C.-K.

N. Deng, K. Chan, C.-K. Chan, and L.-K. Chen, IEEE J. Sel. Top. Quantum Electron. 12, 702 (2006).
[CrossRef]

Chan, K.

N. Deng, K. Chan, C.-K. Chan, and L.-K. Chen, IEEE J. Sel. Top. Quantum Electron. 12, 702 (2006).
[CrossRef]

Chen, L.-K.

N. Deng, K. Chan, C.-K. Chan, and L.-K. Chen, IEEE J. Sel. Top. Quantum Electron. 12, 702 (2006).
[CrossRef]

Choi, D.-Y.

Clausen, A. T.

Deng, N.

N. Deng, K. Chan, C.-K. Chan, and L.-K. Chen, IEEE J. Sel. Top. Quantum Electron. 12, 702 (2006).
[CrossRef]

Eggleton, B. J.

Erasme, D.

Fejer, M. M.

Galili, M.

Gil, S.

Y. J. Jung, C. W. Son, S. Lee, S. Gil, H. S. Kim, and N. Park, Opt. Quantum Electron. 40, 425 (2008).
[CrossRef]

Gómez-Agis, F.

Hu, H.

Huang, D.

Ichikawa, J.

Jeppesen, Palle

Jung, Y. J.

Y. J. Jung, C. W. Son, S. Lee, S. Gil, H. S. Kim, and N. Park, Opt. Quantum Electron. 40, 425 (2008).
[CrossRef]

Kim, H. S.

Y. J. Jung, C. W. Son, S. Lee, S. Gil, H. S. Kim, and N. Park, Opt. Quantum Electron. 40, 425 (2008).
[CrossRef]

Kurimura, S.

Lee, S.

Y. J. Jung, C. W. Son, S. Lee, S. Gil, H. S. Kim, and N. Park, Opt. Quantum Electron. 40, 425 (2008).
[CrossRef]

Lipson, M.

Luther-Davies, B.

Madden, S.

Madden, S. J.

Mulvad, H. C. H.

Nakajima, H.

Nuccio, S. R.

A. E. Willner, O. F. Yilmaz, J. Wang, X. Wu, A. Bogoni, L. Zhang, and S. R. Nuccio, IEEE J. Sel. Top. Quantum Electron. PP, 1 (2010).

Oxenløwe, L. K.

Palushani, E.

Panepucci, R. R.

Pant, R.

Park, N.

Y. J. Jung, C. W. Son, S. Lee, S. Gil, H. S. Kim, and N. Park, Opt. Quantum Electron. 40, 425 (2008).
[CrossRef]

Pelusi, M. D.

Schröder, J.

Son, C. W.

Y. J. Jung, C. W. Son, S. Lee, S. Gil, H. S. Kim, and N. Park, Opt. Quantum Electron. 40, 425 (2008).
[CrossRef]

Sun, J.

Sun, Q.

Vo, T. D.

Wang, J.

A. E. Willner, O. F. Yilmaz, J. Wang, X. Wu, A. Bogoni, L. Zhang, and S. R. Nuccio, IEEE J. Sel. Top. Quantum Electron. PP, 1 (2010).

J. Wang, Q. Sun, and J. Sun, Opt. Express 17, 12555 (2009).
[CrossRef] [PubMed]

J. Wang, J. Sun, X. Zhang, D. Huang, and M. M. Fejer, Opt. Lett. 33, 1419 (2008).
[CrossRef] [PubMed]

Ware, C.

Willner, A. E.

A. E. Willner, O. F. Yilmaz, J. Wang, X. Wu, A. Bogoni, L. Zhang, and S. R. Nuccio, IEEE J. Sel. Top. Quantum Electron. PP, 1 (2010).

Wu, X.

A. E. Willner, O. F. Yilmaz, J. Wang, X. Wu, A. Bogoni, L. Zhang, and S. R. Nuccio, IEEE J. Sel. Top. Quantum Electron. PP, 1 (2010).

Xiong, C.

Xu, J.

Yilmaz, O. F.

A. E. Willner, O. F. Yilmaz, J. Wang, X. Wu, A. Bogoni, L. Zhang, and S. R. Nuccio, IEEE J. Sel. Top. Quantum Electron. PP, 1 (2010).

Zhang, L.

A. E. Willner, O. F. Yilmaz, J. Wang, X. Wu, A. Bogoni, L. Zhang, and S. R. Nuccio, IEEE J. Sel. Top. Quantum Electron. PP, 1 (2010).

Zhang, X.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) Working principle of the chip-based all-optical XOR gate and (b) an illustration of the phase of an FWM idler (XOR gate).

Fig. 2
Fig. 2

(a) Experimental setup for the chip-based all-optical XOR gate for two 40 Gbit / s DPSK channels, (b) optical spectrum observed at the output of the ChG chip, and (c) optical spectra for various CW probe wavelengths, proving broad FWM bandwidth and flexible wavelength operation.

Fig. 3
Fig. 3

(a) Temporal waveforms and eye di agrams of two demodulated input signals and a demodulated XOR product at RX and (b) the corresponding BER measurements, highlighting error-free operations, no indication of error floor, and negligible power penalty of the chip-based XOR gate for 40 Gbit / s DPSK signals.

Fig. 4
Fig. 4

Experimental setup for the photonic chip-based XOR operations for two 160 Gbit / s DPSK channels.

Fig. 5
Fig. 5

(a) Optical spectrum at the output of the ChG chip, (b) eye diagrams of (top) two 160 Gbit / s input data and (bottom) 160 Gbit / s XOR idler, and (c) waveforms and eye diagrams of two demultiplexed and demodulated 40 Gbit / s input data and a XOR product.

Metrics