Abstract

We present a optical system with an extended point-spread function (PSF) for the localization of point sources in the visible and IR spectral ranges with a subpixel precision. This compact system involves a random phase mask (RPM) as its unique component. It exhibits original properties, because this RPM is used in a particular regime, called the “filamentation regime,” before the speckle region. The localization is performed by calculating the phase correlation between the PSF and the image obtained under off-axis illumination. Numerical simulations are presented to assess the basic optical properties of this RPM in the filamentation regime.

© 2011 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Super-resolution photon-efficient imaging by nanometric double-helix point spread function localization of emitters (SPINDLE)

Ginni Grover, Keith DeLuca, Sean Quirin, Jennifer DeLuca, and Rafael Piestun
Opt. Express 20(24) 26681-26695 (2012)

Axial super-localisation using rotating point spread functions shaped by polarisation-dependent phase modulation

Clemens Roider, Alexander Jesacher, Stefan Bernet, and Monika Ritsch-Marte
Opt. Express 22(4) 4029-4037 (2014)

Lensless digital holography with diffuse illumination through a pseudo-random phase mask

Stefan Bernet, Walter Harm, Alexander Jesacher, and Monika Ritsch-Marte
Opt. Express 19(25) 25113-25124 (2011)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (3)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (6)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription