Abstract

We derive the electromagnetic energy density in a chiral metamaterial consisting of uncoupled single-resonance helical resonators. Both the lossless and absorptive cases are studied, and the energy density is shown to be positively definite. The key relation making the derivation successful is the proportionality between the magnetization and the rate of change of the electric polarization of the medium. The same time-domain formulation of energy density also applies to the bianisotropic medium proposed by Zhang et al. [Phys. Rev. Lett. 102, 023901 (2009)]. This work may provide insights for studying time-dependent phenomena in metamaterials.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (26)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription