Abstract

We report on the fabrication of a seven-cell-core and three-ring-cladding large-pitch Kagome-lattice hollow-core photonic crystal fiber (HC-PCF) with a hypocycloid-shaped core structure. We demonstrate experimentally and theoretically that the design of this core shape enhances the coupling inhibition between the core and cladding modes and offers optical attenuation with a baseline of 180dB/km over a transmission bandwidth larger than 200THz. This loss figure rivals the state-of-the-art photonic bandgap HC-PCF while offering an approximately three times larger bandwidth and larger mode areas. Also, it beats the conventional circular-core-shaped Kagome HC-PCF in terms of the loss. The development of this novel (to our knowledge) HC-PCF has potential for a number of applications in which the combination of a large optical bandwidth and a low loss is a prerequisite.

© 2011 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Hypocycloid-shaped hollow-core photonic crystal fiber Part I: Arc curvature effect on confinement loss

B. Debord, M. Alharbi, T. Bradley, C. Fourcade-Dutin, Y.Y. Wang, L. Vincetti, F. Gérôme, and F. Benabid
Opt. Express 21(23) 28597-28608 (2013)

Ultralow transmission loss in inhibited-coupling guiding hollow fibers

B. Debord, A. Amsanpally, M. Chafer, A. Baz, M. Maurel, J. M. Blondy, E. Hugonnot, F. Scol, L. Vincetti, F. Gérôme, and F. Benabid
Optica 4(2) 209-217 (2017)

Optimized inhibited-coupling Kagome fibers at Yb-Nd:Yag (8.5  dB/km) and Ti:Sa (30 dB/km) ranges

Martin Maurel, Matthieu Chafer, Abhilash Amsanpally, Muhammad Adnan, Foued Amrani, Benoit Debord, Luca Vincetti, Frédéric Gérôme, and Fetah Benabid
Opt. Lett. 43(7) 1598-1601 (2018)

References

  • View by:
  • |
  • |
  • |

  1. F. Benabid, Phil. Trans. R. Soc. A 364, 3439 (2006).
    [Crossref] [PubMed]
  2. F. Couny, F. Benabid, P. J. Roberts, M. T. Burnett, and S. A. Maier, Opt. Express 15, 325 (2007).
    [Crossref] [PubMed]
  3. F. Couny, F. Benabid, P. J. Roberts, P. S. Light, and M. G. Raymer, Science 318, 1118 (2007).
    [Crossref] [PubMed]
  4. F. Couny, F. Benabid, and P. S. Light, Opt. Lett. 31, 3574 (2006).
    [Crossref] [PubMed]
  5. F. Couny, P. J. Roberts, T. A. Birks, and F. Benabid, Opt. Express 16, 20626 (2008).
    [Crossref] [PubMed]
  6. P. S. Light, F. Couny, Y. Y. Wang, N. V. Wheeler, P. J. Roberts, and F. Benabid, Opt. Express 17, 16238 (2009).
    [Crossref] [PubMed]
  7. F. Benabid, J. C. Knight, G. Antonopoulos, and P. S. J. Russell, Science 298, 399 (2002).
    [Crossref] [PubMed]
  8. T. D. Hedley, D. M. Bird, F.  Benabid, J. C. Knight, and P. S. J. Russell, in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference, Tech. Dig. (Optical Society of America, 2003), paper QTuL4 .
  9. A. Argyros and J. Pla, Opt. Express 15, 7713 (2007).
    [Crossref] [PubMed]
  10. G. J. Pearce, G. S. Wiederhecker, C. G. Poulton, S. Burger, and P. St. J. Russell, Opt. Express 15, 12680 (2007).
    [Crossref] [PubMed]
  11. S. Schiller and R. L. Byer, Opt. Lett. 16, 1138 (1991).
    [Crossref] [PubMed]
  12. H. Kogelnik, in Guided-Wave Optoelctronics, T.Tamir, ed. (Springer-Verlag, 1988), pp. 7–88.
  13. Y. Y. Wang, P. S. Light, and F. Benabid, IEEE Photonics Technol. Lett. 20, 1018 (2008).
    [Crossref]
  14. J. C. Knight, T. A. Birks, P. St. J. Russell, and D. M. Atkin, Opt. Lett. 21, 1547 (1996).
    [Crossref] [PubMed]

2009 (1)

2008 (2)

F. Couny, P. J. Roberts, T. A. Birks, and F. Benabid, Opt. Express 16, 20626 (2008).
[Crossref] [PubMed]

Y. Y. Wang, P. S. Light, and F. Benabid, IEEE Photonics Technol. Lett. 20, 1018 (2008).
[Crossref]

2007 (4)

2006 (2)

2002 (1)

F. Benabid, J. C. Knight, G. Antonopoulos, and P. S. J. Russell, Science 298, 399 (2002).
[Crossref] [PubMed]

1996 (1)

1991 (1)

Antonopoulos, G.

F. Benabid, J. C. Knight, G. Antonopoulos, and P. S. J. Russell, Science 298, 399 (2002).
[Crossref] [PubMed]

Argyros, A.

Atkin, D. M.

Benabid, F.

Benabid, F.?

T. D. Hedley, D. M. Bird, F.  Benabid, J. C. Knight, and P. S. J. Russell, in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference, Tech. Dig. (Optical Society of America, 2003), paper QTuL4 .

Bird, D. M.

T. D. Hedley, D. M. Bird, F.  Benabid, J. C. Knight, and P. S. J. Russell, in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference, Tech. Dig. (Optical Society of America, 2003), paper QTuL4 .

Birks, T. A.

Burger, S.

Burnett, M. T.

Byer, R. L.

Couny, F.

Hedley, T. D.

T. D. Hedley, D. M. Bird, F.  Benabid, J. C. Knight, and P. S. J. Russell, in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference, Tech. Dig. (Optical Society of America, 2003), paper QTuL4 .

Knight, J. C.

F. Benabid, J. C. Knight, G. Antonopoulos, and P. S. J. Russell, Science 298, 399 (2002).
[Crossref] [PubMed]

J. C. Knight, T. A. Birks, P. St. J. Russell, and D. M. Atkin, Opt. Lett. 21, 1547 (1996).
[Crossref] [PubMed]

T. D. Hedley, D. M. Bird, F.  Benabid, J. C. Knight, and P. S. J. Russell, in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference, Tech. Dig. (Optical Society of America, 2003), paper QTuL4 .

Kogelnik, H.

H. Kogelnik, in Guided-Wave Optoelctronics, T.Tamir, ed. (Springer-Verlag, 1988), pp. 7–88.

Light, P. S.

P. S. Light, F. Couny, Y. Y. Wang, N. V. Wheeler, P. J. Roberts, and F. Benabid, Opt. Express 17, 16238 (2009).
[Crossref] [PubMed]

Y. Y. Wang, P. S. Light, and F. Benabid, IEEE Photonics Technol. Lett. 20, 1018 (2008).
[Crossref]

F. Couny, F. Benabid, P. J. Roberts, P. S. Light, and M. G. Raymer, Science 318, 1118 (2007).
[Crossref] [PubMed]

F. Couny, F. Benabid, and P. S. Light, Opt. Lett. 31, 3574 (2006).
[Crossref] [PubMed]

Maier, S. A.

Pearce, G. J.

Pla, J.

Poulton, C. G.

Raymer, M. G.

F. Couny, F. Benabid, P. J. Roberts, P. S. Light, and M. G. Raymer, Science 318, 1118 (2007).
[Crossref] [PubMed]

Roberts, P. J.

Russell, P. S. J.

F. Benabid, J. C. Knight, G. Antonopoulos, and P. S. J. Russell, Science 298, 399 (2002).
[Crossref] [PubMed]

T. D. Hedley, D. M. Bird, F.  Benabid, J. C. Knight, and P. S. J. Russell, in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference, Tech. Dig. (Optical Society of America, 2003), paper QTuL4 .

Russell, P. St. J.

Schiller, S.

Wang, Y. Y.

Wheeler, N. V.

Wiederhecker, G. S.

IEEE Photonics Technol. Lett. (1)

Y. Y. Wang, P. S. Light, and F. Benabid, IEEE Photonics Technol. Lett. 20, 1018 (2008).
[Crossref]

Opt. Express (5)

Opt. Lett. (3)

Phil. Trans. R. Soc. A (1)

F. Benabid, Phil. Trans. R. Soc. A 364, 3439 (2006).
[Crossref] [PubMed]

Science (2)

F. Couny, F. Benabid, P. J. Roberts, P. S. Light, and M. G. Raymer, Science 318, 1118 (2007).
[Crossref] [PubMed]

F. Benabid, J. C. Knight, G. Antonopoulos, and P. S. J. Russell, Science 298, 399 (2002).
[Crossref] [PubMed]

Other (2)

T. D. Hedley, D. M. Bird, F.  Benabid, J. C. Knight, and P. S. J. Russell, in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference, Tech. Dig. (Optical Society of America, 2003), paper QTuL4 .

H. Kogelnik, in Guided-Wave Optoelctronics, T.Tamir, ed. (Springer-Verlag, 1988), pp. 7–88.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1 Scanning electron micrographs (SEMs) of seven-cell-core and three-ring Kagome cladding HC-PCF with (a) a circular core and (b) a hypocycloid core. Attenuation spectra for the (c) circular-core and (d) hypocycloid-core Kagome HC-PCF. Insets in (c) and (d) show the detailed SEMs of the core.
Fig. 2
Fig. 2 (a) Calculated loss spectra for seven-cell-core and three-ring Kagome cladding HC-PCF with a circular core [(1), blue and dotted] and a hypocycloid core [(2), gray and solid]. The corresponding structures used in the calculations are shown on the right. (b) Calculated loss spectra for a single circular ring [(1), pink and dotted], a single hypocycloid ring [(2), red and dashed], and one-ring [(3), blue and dash-dotted] and three-ring [(4), gray and solid] Kagome HC-PCF with a hypocycloid core. The corresponding structures used in the calculations are shown on the right.
Fig. 3
Fig. 3 (a) SEMs of a fabricated seven-cell hypocycloid-core and three-ring Kagome cladding HC-PCF. (b) Transmission (top) and attenuation (bottom) spectra of this fiber measured by the supercontinuum source with a cutback measurement from 60 to 5 m fiber length.

Metrics