Abstract

We report on the fabrication of a seven-cell-core and three-ring-cladding large-pitch Kagome-lattice hollow-core photonic crystal fiber (HC-PCF) with a hypocycloid-shaped core structure. We demonstrate experimentally and theoretically that the design of this core shape enhances the coupling inhibition between the core and cladding modes and offers optical attenuation with a baseline of 180dB/km over a transmission bandwidth larger than 200THz. This loss figure rivals the state-of-the-art photonic bandgap HC-PCF while offering an approximately three times larger bandwidth and larger mode areas. Also, it beats the conventional circular-core-shaped Kagome HC-PCF in terms of the loss. The development of this novel (to our knowledge) HC-PCF has potential for a number of applications in which the combination of a large optical bandwidth and a low loss is a prerequisite.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (3)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription