Abstract

We propose and experimentally demonstrate an advanced method for chromatic dispersion measurement of fiber. This technique is based on spectral interferometry by using an asymmetric Sagnac loop and broadband optical source. The chromatic dispersion can be directly obtained from the spectral interferogram seen from an optical spectral analyzer. This method is rapid (<1s), accurate, simple, low cost, and can provide a large dispersion measurement range.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. G. Cohen, J. Lightwave Technol. 3, 958 (1985).
    [CrossRef]
  2. J. Hult, R. S. Watt, and C. F. Kaminski, J. Lightwave Technol. 25, 820 (2007).
    [CrossRef]
  3. B. Costa, D. Mazzoni, M. Puleo, and E. Vezzoni, IEEE Trans. Microwave Theory Tech. 30, 1497 (1982).
    [CrossRef]
  4. J. Y. Lee and D. Y. Kim, Opt. Express 14, 11608 (2006).
    [CrossRef] [PubMed]
  5. P. Merritt, R. P. Tatam, and D. A. Jacson, J. Lightwave Technol. 7, 703 (1989).
    [CrossRef]
  6. C. Palavicini, Y. Jaouën, G. Debarge, E. Kerrinckx, Y. Quiquempois, M. Douay, C. Lepers, A.-F. Obaton, and G. Melin, Opt. Lett. 30, 361 (2005).
    [CrossRef] [PubMed]
  7. T. N. Nguyen, T. Chartier, M. Thual, P. Besnard, L. Provino, A. Monteville, and N. Traynor, Opt. Commun. 278, 60 (2007).
    [CrossRef]
  8. L. F. Mollenauer, P. V. Mamyshev, and M. J. Neubelt, Opt. Lett. 21, 1724 (1996).
    [CrossRef] [PubMed]
  9. K. S. Abedin, M. Hyodo, and N. Onodera, Opt. Lett. 25, 299(2000).
    [CrossRef]
  10. K. S. Abedin, Electron. Lett. 41, 469 (2005).
    [CrossRef]

2007 (2)

J. Hult, R. S. Watt, and C. F. Kaminski, J. Lightwave Technol. 25, 820 (2007).
[CrossRef]

T. N. Nguyen, T. Chartier, M. Thual, P. Besnard, L. Provino, A. Monteville, and N. Traynor, Opt. Commun. 278, 60 (2007).
[CrossRef]

2006 (1)

2005 (2)

2000 (1)

1996 (1)

1989 (1)

P. Merritt, R. P. Tatam, and D. A. Jacson, J. Lightwave Technol. 7, 703 (1989).
[CrossRef]

1985 (1)

L. G. Cohen, J. Lightwave Technol. 3, 958 (1985).
[CrossRef]

1982 (1)

B. Costa, D. Mazzoni, M. Puleo, and E. Vezzoni, IEEE Trans. Microwave Theory Tech. 30, 1497 (1982).
[CrossRef]

Abedin, K. S.

Besnard, P.

T. N. Nguyen, T. Chartier, M. Thual, P. Besnard, L. Provino, A. Monteville, and N. Traynor, Opt. Commun. 278, 60 (2007).
[CrossRef]

Chartier, T.

T. N. Nguyen, T. Chartier, M. Thual, P. Besnard, L. Provino, A. Monteville, and N. Traynor, Opt. Commun. 278, 60 (2007).
[CrossRef]

Cohen, L. G.

L. G. Cohen, J. Lightwave Technol. 3, 958 (1985).
[CrossRef]

Costa, B.

B. Costa, D. Mazzoni, M. Puleo, and E. Vezzoni, IEEE Trans. Microwave Theory Tech. 30, 1497 (1982).
[CrossRef]

Debarge, G.

Douay, M.

Hult, J.

Hyodo, M.

Jacson, D. A.

P. Merritt, R. P. Tatam, and D. A. Jacson, J. Lightwave Technol. 7, 703 (1989).
[CrossRef]

Jaouën, Y.

Kaminski, C. F.

Kerrinckx, E.

Kim, D. Y.

Lee, J. Y.

Lepers, C.

Mamyshev, P. V.

Mazzoni, D.

B. Costa, D. Mazzoni, M. Puleo, and E. Vezzoni, IEEE Trans. Microwave Theory Tech. 30, 1497 (1982).
[CrossRef]

Melin, G.

Merritt, P.

P. Merritt, R. P. Tatam, and D. A. Jacson, J. Lightwave Technol. 7, 703 (1989).
[CrossRef]

Mollenauer, L. F.

Monteville, A.

T. N. Nguyen, T. Chartier, M. Thual, P. Besnard, L. Provino, A. Monteville, and N. Traynor, Opt. Commun. 278, 60 (2007).
[CrossRef]

Neubelt, M. J.

Nguyen, T. N.

T. N. Nguyen, T. Chartier, M. Thual, P. Besnard, L. Provino, A. Monteville, and N. Traynor, Opt. Commun. 278, 60 (2007).
[CrossRef]

Obaton, A.-F.

Onodera, N.

Palavicini, C.

Provino, L.

T. N. Nguyen, T. Chartier, M. Thual, P. Besnard, L. Provino, A. Monteville, and N. Traynor, Opt. Commun. 278, 60 (2007).
[CrossRef]

Puleo, M.

B. Costa, D. Mazzoni, M. Puleo, and E. Vezzoni, IEEE Trans. Microwave Theory Tech. 30, 1497 (1982).
[CrossRef]

Quiquempois, Y.

Tatam, R. P.

P. Merritt, R. P. Tatam, and D. A. Jacson, J. Lightwave Technol. 7, 703 (1989).
[CrossRef]

Thual, M.

T. N. Nguyen, T. Chartier, M. Thual, P. Besnard, L. Provino, A. Monteville, and N. Traynor, Opt. Commun. 278, 60 (2007).
[CrossRef]

Traynor, N.

T. N. Nguyen, T. Chartier, M. Thual, P. Besnard, L. Provino, A. Monteville, and N. Traynor, Opt. Commun. 278, 60 (2007).
[CrossRef]

Vezzoni, E.

B. Costa, D. Mazzoni, M. Puleo, and E. Vezzoni, IEEE Trans. Microwave Theory Tech. 30, 1497 (1982).
[CrossRef]

Watt, R. S.

Electron. Lett. (1)

K. S. Abedin, Electron. Lett. 41, 469 (2005).
[CrossRef]

IEEE Trans. Microwave Theory Tech. (1)

B. Costa, D. Mazzoni, M. Puleo, and E. Vezzoni, IEEE Trans. Microwave Theory Tech. 30, 1497 (1982).
[CrossRef]

J. Lightwave Technol. (3)

L. G. Cohen, J. Lightwave Technol. 3, 958 (1985).
[CrossRef]

J. Hult, R. S. Watt, and C. F. Kaminski, J. Lightwave Technol. 25, 820 (2007).
[CrossRef]

P. Merritt, R. P. Tatam, and D. A. Jacson, J. Lightwave Technol. 7, 703 (1989).
[CrossRef]

Opt. Commun. (1)

T. N. Nguyen, T. Chartier, M. Thual, P. Besnard, L. Provino, A. Monteville, and N. Traynor, Opt. Commun. 278, 60 (2007).
[CrossRef]

Opt. Express (1)

Opt. Lett. (3)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Experimental setup of the proposed chromatic dispersion measurement. L 1 and L 2 are the lengths of connecting fiber from port 3 of the coupler to the test fiber and from port 4 of the coupler to the modulator, respectively.

Fig. 2
Fig. 2

Measured optical spectral interferogram in the wavelength range of 1500 to 1600 nm .

Fig. 3
Fig. 3

Retrieved relative phase with quadratic fit for 20.62 km G.652 fiber.

Fig. 4
Fig. 4

Experimental results. (a) Measured chromatic dispersion of 20.62 km G.652 fiber by our method (solid curve) and by Agilent 86037C (dashed curve). (b) Measured dispersion slope by our method (solid curve) and by Agilent 86037C (dashed curve).

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

F out 3 ( ω ) = I L f F in ( ω ) / 2 ,
F out 4 ( ω ) = j I L f F in ( ω ) / 2 ,
F in 3 ( ω ) = F ( F 1 ( F out 4 ( ω ) H ( ω , L 2 ) ) E MCCW ( t ) ) H ( ω , L 1 ) H ( ω , L ) ,
F in 4 ( ω ) = F ( F 1 ( F out 3 ( ω ) H ( ω , L 1 ) H ( ω , L ) ) E MCW ( t ) ) H ( ω , L 2 ) ,
F out 2 ( ω ) = I L f ( j F in 3 ( ω ) / 2 + F in 4 ( ω ) / 2 ) .
F out 2 ( ω ) = 1 8 I L f 2 F in ( ω ω RF ) H ( ω ω RF , L 2 ) H ( ω , L 2 ) [ m CW H ( ω ω RF , L 1 L 2 ) H ( ω ω RF , L ) m CCW H ( ω , L 1 L 2 ) H ( ω , L ) ] + 1 8 I L f 2 F in ( ω + ω RF ) H ( ω + ω RF , L 2 ) H ( ω , L 2 ) [ m CW H ( ω + ω RF , L 1 L 2 ) H ( ω + ω RF , L ) m CCW H ( ω , L 1 L 2 ) H ( ω , L ) ] .
H ( ω ω RF , L 1 L 2 ) H ( ω , L 1 L 2 ) H ( ω + ω RF , L 1 L 2 ) 1.
F out 2 ( ω ) = 1 8 I L f 2 F in ( ω ω RF ) H ( ω ω RF , L 2 ) H ( ω , L 2 ) [ m CW H ( ω ω RF , L ) m CCW H ( ω , L ) ] + 1 8 I L f 2 F in ( ω + ω RF ) H ( ω + ω RF , L 2 ) H ( ω , L 2 ) [ m CW H ( ω + ω RF , L ) m CCW H ( ω , L ) ] .
β ( f ) = 1 L ( A f 3 + B f 2 + C f + D ) .
Δ ϕ ( f ) = ( 3 A Δ f ) f 2 + ( 3 A Δ f 2 + 2 B Δ f ) f + constant term,
D ( λ ) L = c 2 π [ 6 A c λ 3 + 2 B λ 2 ] ,

Metrics