Abstract

Using numerical simulation, we have studied in detail vacuum electron acceleration driven by two crossed Airy beams with identical characteristics except for opposite accelerating directions. An electron injected along the longitudinal central axis is only affected by the combined longitudinal electric field. In addition, a suitable crossed Airy beams scheme is more beneficial to the energy gain of an electron than the single Airy beam acceleration scheme [Opt. Lett. 35, 3258 (2010)]. Meanwhile, the cross angle, the injection energy of the electron, and the initial phase of the Airy beams play significant roles in the energy gain of the electron.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. D. Perry, D. Pennington, B. C. Stuart, G. Tietbohl, J. A. Britten, C. Brown, S. Herman, B. Golick, M. Kartz, J. Miller, H. T. Powell, M. Vergino, and V. Yanovsky, Opt. Lett. 24, 160 (1999).
    [CrossRef]
  2. Y. I. Salamin and C. H. Kertel, Phys. Rev. Lett. 88, 095005(2002).
    [CrossRef] [PubMed]
  3. P. X. Wang, W. Scheid, and Y. K. Ho, Appl. Phys. Lett. 87, 254102 (2005).
    [CrossRef]
  4. J. X. Li, W. P. Zang, and J. G. Tian, Appl. Phys. Lett. 96, 031103 (2010).
    [CrossRef]
  5. E. Esarey, P. Sprangle, and J. Krall, Phys. Rev. E 52, 5443(1995).
    [CrossRef]
  6. H. Zhang, S. Liu, and H. Guo, Phys. Lett. A 367, 402 (2007).
    [CrossRef]
  7. Y. I. Salamin, Phys. Rev. A 82, 013823 (2010).
    [CrossRef]
  8. G. A. Siviloglou and D. N. Christodoulides, Opt. Lett. 32, 979 (2007).
    [CrossRef] [PubMed]
  9. G. A. Siviloglou, J. Broky, A. Dogariu, and D. N. Christodoulides, Phys. Rev. Lett. 99, 213901 (2007).
    [CrossRef]
  10. J. Baumgartl, M. Mazilu, and K. Dholakia, Nat. Photon. 2, 675 (2008).
    [CrossRef]
  11. Y. Hu, P. Zhang, C. Lou, S. Huang, J. Xu, and Z. Chen, Opt. Lett. 35, 2260 (2010).
    [CrossRef] [PubMed]
  12. I. Dolev, T. Ellenbogen, and A. Arie, Opt. Lett. 35, 1581(2010).
    [CrossRef] [PubMed]
  13. J. X. Li, W. P. Zang, and J. G. Tian, Opt. Express 18, 7300(2010).
    [CrossRef] [PubMed]
  14. J.-X. Li, W.-P. Zang, and J.-G. Tian, Opt. Lett. 35, 3258(2010).
    [CrossRef] [PubMed]

2010 (6)

2008 (1)

J. Baumgartl, M. Mazilu, and K. Dholakia, Nat. Photon. 2, 675 (2008).
[CrossRef]

2007 (3)

G. A. Siviloglou, J. Broky, A. Dogariu, and D. N. Christodoulides, Phys. Rev. Lett. 99, 213901 (2007).
[CrossRef]

H. Zhang, S. Liu, and H. Guo, Phys. Lett. A 367, 402 (2007).
[CrossRef]

G. A. Siviloglou and D. N. Christodoulides, Opt. Lett. 32, 979 (2007).
[CrossRef] [PubMed]

2005 (1)

P. X. Wang, W. Scheid, and Y. K. Ho, Appl. Phys. Lett. 87, 254102 (2005).
[CrossRef]

2002 (1)

Y. I. Salamin and C. H. Kertel, Phys. Rev. Lett. 88, 095005(2002).
[CrossRef] [PubMed]

1999 (1)

1995 (1)

E. Esarey, P. Sprangle, and J. Krall, Phys. Rev. E 52, 5443(1995).
[CrossRef]

Arie, A.

Baumgartl, J.

J. Baumgartl, M. Mazilu, and K. Dholakia, Nat. Photon. 2, 675 (2008).
[CrossRef]

Britten, J. A.

Broky, J.

G. A. Siviloglou, J. Broky, A. Dogariu, and D. N. Christodoulides, Phys. Rev. Lett. 99, 213901 (2007).
[CrossRef]

Brown, C.

Chen, Z.

Christodoulides, D. N.

G. A. Siviloglou, J. Broky, A. Dogariu, and D. N. Christodoulides, Phys. Rev. Lett. 99, 213901 (2007).
[CrossRef]

G. A. Siviloglou and D. N. Christodoulides, Opt. Lett. 32, 979 (2007).
[CrossRef] [PubMed]

Dholakia, K.

J. Baumgartl, M. Mazilu, and K. Dholakia, Nat. Photon. 2, 675 (2008).
[CrossRef]

Dogariu, A.

G. A. Siviloglou, J. Broky, A. Dogariu, and D. N. Christodoulides, Phys. Rev. Lett. 99, 213901 (2007).
[CrossRef]

Dolev, I.

Ellenbogen, T.

Esarey, E.

E. Esarey, P. Sprangle, and J. Krall, Phys. Rev. E 52, 5443(1995).
[CrossRef]

Golick, B.

Guo, H.

H. Zhang, S. Liu, and H. Guo, Phys. Lett. A 367, 402 (2007).
[CrossRef]

Herman, S.

Ho, Y. K.

P. X. Wang, W. Scheid, and Y. K. Ho, Appl. Phys. Lett. 87, 254102 (2005).
[CrossRef]

Hu, Y.

Huang, S.

Kartz, M.

Kertel, C. H.

Y. I. Salamin and C. H. Kertel, Phys. Rev. Lett. 88, 095005(2002).
[CrossRef] [PubMed]

Krall, J.

E. Esarey, P. Sprangle, and J. Krall, Phys. Rev. E 52, 5443(1995).
[CrossRef]

Li, J. X.

J. X. Li, W. P. Zang, and J. G. Tian, Appl. Phys. Lett. 96, 031103 (2010).
[CrossRef]

J. X. Li, W. P. Zang, and J. G. Tian, Opt. Express 18, 7300(2010).
[CrossRef] [PubMed]

Li, J.-X.

Liu, S.

H. Zhang, S. Liu, and H. Guo, Phys. Lett. A 367, 402 (2007).
[CrossRef]

Lou, C.

Mazilu, M.

J. Baumgartl, M. Mazilu, and K. Dholakia, Nat. Photon. 2, 675 (2008).
[CrossRef]

Miller, J.

Pennington, D.

Perry, M. D.

Powell, H. T.

Salamin, Y. I.

Y. I. Salamin, Phys. Rev. A 82, 013823 (2010).
[CrossRef]

Y. I. Salamin and C. H. Kertel, Phys. Rev. Lett. 88, 095005(2002).
[CrossRef] [PubMed]

Scheid, W.

P. X. Wang, W. Scheid, and Y. K. Ho, Appl. Phys. Lett. 87, 254102 (2005).
[CrossRef]

Siviloglou, G. A.

G. A. Siviloglou, J. Broky, A. Dogariu, and D. N. Christodoulides, Phys. Rev. Lett. 99, 213901 (2007).
[CrossRef]

G. A. Siviloglou and D. N. Christodoulides, Opt. Lett. 32, 979 (2007).
[CrossRef] [PubMed]

Sprangle, P.

E. Esarey, P. Sprangle, and J. Krall, Phys. Rev. E 52, 5443(1995).
[CrossRef]

Stuart, B. C.

Tian, J. G.

J. X. Li, W. P. Zang, and J. G. Tian, Appl. Phys. Lett. 96, 031103 (2010).
[CrossRef]

J. X. Li, W. P. Zang, and J. G. Tian, Opt. Express 18, 7300(2010).
[CrossRef] [PubMed]

Tian, J.-G.

Tietbohl, G.

Vergino, M.

Wang, P. X.

P. X. Wang, W. Scheid, and Y. K. Ho, Appl. Phys. Lett. 87, 254102 (2005).
[CrossRef]

Xu, J.

Yanovsky, V.

Zang, W. P.

J. X. Li, W. P. Zang, and J. G. Tian, Opt. Express 18, 7300(2010).
[CrossRef] [PubMed]

J. X. Li, W. P. Zang, and J. G. Tian, Appl. Phys. Lett. 96, 031103 (2010).
[CrossRef]

Zang, W.-P.

Zhang, H.

H. Zhang, S. Liu, and H. Guo, Phys. Lett. A 367, 402 (2007).
[CrossRef]

Zhang, P.

Appl. Phys. Lett. (2)

P. X. Wang, W. Scheid, and Y. K. Ho, Appl. Phys. Lett. 87, 254102 (2005).
[CrossRef]

J. X. Li, W. P. Zang, and J. G. Tian, Appl. Phys. Lett. 96, 031103 (2010).
[CrossRef]

Nat. Photon. (1)

J. Baumgartl, M. Mazilu, and K. Dholakia, Nat. Photon. 2, 675 (2008).
[CrossRef]

Opt. Express (1)

Opt. Lett. (5)

Phys. Lett. A (1)

H. Zhang, S. Liu, and H. Guo, Phys. Lett. A 367, 402 (2007).
[CrossRef]

Phys. Rev. A (1)

Y. I. Salamin, Phys. Rev. A 82, 013823 (2010).
[CrossRef]

Phys. Rev. E (1)

E. Esarey, P. Sprangle, and J. Krall, Phys. Rev. E 52, 5443(1995).
[CrossRef]

Phys. Rev. Lett. (2)

G. A. Siviloglou, J. Broky, A. Dogariu, and D. N. Christodoulides, Phys. Rev. Lett. 99, 213901 (2007).
[CrossRef]

Y. I. Salamin and C. H. Kertel, Phys. Rev. Lett. 88, 095005(2002).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic that shows the acceleration configuration (an electron injected into the longitudinal central axis of two crossed Airy beams, which cross at an angle, 2 θ , with a distance of 2 d ). Schemes of (a) FCAB and (b) BCAB.

Fig. 2
Fig. 2

Propagation dynamics of two crossed Airy beams. (a)–(c) FCAB with d = 4 x 0 at θ = 1 ° , 0, and 1 ° , respectively. (d)–(f) ZCAB at θ = 1 ° , 0, and 1 ° , respectively. (g)–(i) BCAB with d = 4 x 0 at θ = 1 ° , 0, and 1 ° , respectively. Parameters used here are λ = 1 μm , x 0 = 5 λ , and a = 0.05 .

Fig. 3
Fig. 3

Propagation dynamics of E z in the z axis. t = 0 , ψ 0 = 0 , and other parameters are same as those of Fig. 2.

Fig. 4
Fig. 4

(a)–(c) Energy gains of an electron in FCAB, ZCAB, and BCAB, respectively. Black, red, and blue curves are simulated at θ = 1 ° , 0, and 1 ° , respectively. Parameters used here are d = 4 x 0 , ψ 0 = 0 , λ = 1 μm , x 0 = 5 λ , a = 0.05 , the injection energy of the electron γ 0 = 40 , q = 14.142 for each Airy beam, the initial injection coordinate ( x , z ) = ( 0 , 25 z r ) , and the full interaction time ω t = 1 × 10 6 . (d) Energy gains of an electron in a single Airy beam. ( x , z ) = ( 0.1 x 0 , 0 ) and q = 20 .

Fig. 5
Fig. 5

(a)–(c) Variations of the energy gain with θ, γ 0 , and ψ 0 in FCAB. Parameters used here are θ = 1 ° , d = 4 x 0 . and q = 14.142 , and other parameters are the same as those of Fig. 4.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

E z = 2 ( E z 1 cos θ E x 1 sin θ ) ,
E x 1 = i E { ( 2 a 2 + 2 i a ξ ξ 2 / 4 + 2 k 2 x 0 2 ) A i ( A ) + ( 4 a + i ξ ) A i ( A ) } / ( 2 k 2 x 0 2 ) ,
E z 1 = E { [ 2 a 3 + 9 i a 2 ξ / 2 + a ( 3 ξ 2 / 2 4 k 2 x 0 2 ) i ( 2 i + ξ 3 / 8 + ξ k 2 x 0 2 ) ] A i ( A ) + ( 6 a 2 + 4 i a ξ ξ 2 / 2 4 k 2 x 0 2 ) A i ( A ) } / ( 4 k 3 x 0 3 ) ,

Metrics