Abstract

A fiber in-line Mach–Zehnder interferometer is fabricated through selective infiltrating of two adjacent air holes of the innermost layer in the solid core photonic crystal fiber, assisted by femtosecond laser micromachining. The liquid infiltrated has higher refractive index than that of the background silica, and, hence, the two rods created can support a guide mode with lower effective refractive index than that of silica. The interference is produced by the fiber fundamental mode and the guide mode. The free spectral range (FSR) of the interferometer is found to be dependent on the photonic crystal fiber length, and a large FSR corresponds to a short photonic crystal fiber length. Such an interferometer device is robust and exhibits extremely high temperature sensitivity (7.3nm/°C for the photonic crystal fiber length of 3.4cm) and flexible operation capability.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. K. C. Wu, B. T. Kuhlmey, and B. J. Eggleton, Opt. Lett. 34, 322 (2009).
    [CrossRef] [PubMed]
  2. B. T. Kuhlmey, B. J. Eggleton, and D. K. C. Wu, J. Lightwave Technol. 27, 1617 (2009).
    [CrossRef]
  3. Y. Wang, C. R. Liao, and D. N. Wang, Opt. Express 18, 18056 (2010).
    [CrossRef] [PubMed]
  4. G. E. Town, W. Yuan, R. McCosker, and O. Bang, Opt. Lett. 35, 856 (2010).
    [CrossRef] [PubMed]
  5. W. Yuan, G. E. Town, and O. Bang, IEEE Sens. J. 10, 1192(2010).
    [CrossRef]
  6. B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, and A. H. Greenaway, Electron. Lett. 36, 1358 (2000).
    [CrossRef]
  7. Z. Wang, T. Taru, T. A. Birks, and J. C. Knight, Opt. Express 15, 4795 (2007).
    [CrossRef] [PubMed]
  8. W. E. P. Paddena, M. A. van Eijkelenborg, A. Argyros, and N. A. Issa, Appl. Phys. Lett. 84, 1689 (2004).
    [CrossRef]
  9. J. Du, Y. Liu, Z. Wang, Z. Liu, B. Zou, L. Jin, B. Liu, G. Kai, and X. Dong, Opt. Express 16, 4263 (2008).
    [CrossRef] [PubMed]
  10. Y. Wang, Y. Li, C. Liao, D. N. Wang, M. Yang, and P. Lu, IEEE Photon. Technol. Lett. 22, 39 (2010).
    [CrossRef]
  11. J. I. Kou, Z. D. Huang, G. Zhu, F. Xu, and Y. Q. Lu, “Wave guiding properties and sensitivity of D-shaped optical fiber microwire devices,” Appl. Phys. B (to be published).
  12. T. Toyoda and M. Yabe, J. Phys. D 16, L97 (1983).
    [CrossRef]

2010 (4)

W. Yuan, G. E. Town, and O. Bang, IEEE Sens. J. 10, 1192(2010).
[CrossRef]

Y. Wang, Y. Li, C. Liao, D. N. Wang, M. Yang, and P. Lu, IEEE Photon. Technol. Lett. 22, 39 (2010).
[CrossRef]

G. E. Town, W. Yuan, R. McCosker, and O. Bang, Opt. Lett. 35, 856 (2010).
[CrossRef] [PubMed]

Y. Wang, C. R. Liao, and D. N. Wang, Opt. Express 18, 18056 (2010).
[CrossRef] [PubMed]

2009 (2)

2008 (1)

2007 (1)

2004 (1)

W. E. P. Paddena, M. A. van Eijkelenborg, A. Argyros, and N. A. Issa, Appl. Phys. Lett. 84, 1689 (2004).
[CrossRef]

2000 (1)

B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, and A. H. Greenaway, Electron. Lett. 36, 1358 (2000).
[CrossRef]

1983 (1)

T. Toyoda and M. Yabe, J. Phys. D 16, L97 (1983).
[CrossRef]

Argyros, A.

W. E. P. Paddena, M. A. van Eijkelenborg, A. Argyros, and N. A. Issa, Appl. Phys. Lett. 84, 1689 (2004).
[CrossRef]

Bang, O.

Birks, T. A.

Z. Wang, T. Taru, T. A. Birks, and J. C. Knight, Opt. Express 15, 4795 (2007).
[CrossRef] [PubMed]

B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, and A. H. Greenaway, Electron. Lett. 36, 1358 (2000).
[CrossRef]

Dong, X.

Du, J.

Eggleton, B. J.

Greenaway, A. H.

B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, and A. H. Greenaway, Electron. Lett. 36, 1358 (2000).
[CrossRef]

Huang, Z. D.

J. I. Kou, Z. D. Huang, G. Zhu, F. Xu, and Y. Q. Lu, “Wave guiding properties and sensitivity of D-shaped optical fiber microwire devices,” Appl. Phys. B (to be published).

Issa, N. A.

W. E. P. Paddena, M. A. van Eijkelenborg, A. Argyros, and N. A. Issa, Appl. Phys. Lett. 84, 1689 (2004).
[CrossRef]

Jin, L.

Kai, G.

Knight, J. C.

Z. Wang, T. Taru, T. A. Birks, and J. C. Knight, Opt. Express 15, 4795 (2007).
[CrossRef] [PubMed]

B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, and A. H. Greenaway, Electron. Lett. 36, 1358 (2000).
[CrossRef]

Kou, J. I.

J. I. Kou, Z. D. Huang, G. Zhu, F. Xu, and Y. Q. Lu, “Wave guiding properties and sensitivity of D-shaped optical fiber microwire devices,” Appl. Phys. B (to be published).

Kuhlmey, B. T.

Li, Y.

Y. Wang, Y. Li, C. Liao, D. N. Wang, M. Yang, and P. Lu, IEEE Photon. Technol. Lett. 22, 39 (2010).
[CrossRef]

Liao, C.

Y. Wang, Y. Li, C. Liao, D. N. Wang, M. Yang, and P. Lu, IEEE Photon. Technol. Lett. 22, 39 (2010).
[CrossRef]

Liao, C. R.

Liu, B.

Liu, Y.

Liu, Z.

Lu, P.

Y. Wang, Y. Li, C. Liao, D. N. Wang, M. Yang, and P. Lu, IEEE Photon. Technol. Lett. 22, 39 (2010).
[CrossRef]

Lu, Y. Q.

J. I. Kou, Z. D. Huang, G. Zhu, F. Xu, and Y. Q. Lu, “Wave guiding properties and sensitivity of D-shaped optical fiber microwire devices,” Appl. Phys. B (to be published).

Mangan, B. J.

B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, and A. H. Greenaway, Electron. Lett. 36, 1358 (2000).
[CrossRef]

McCosker, R.

Paddena, W. E. P.

W. E. P. Paddena, M. A. van Eijkelenborg, A. Argyros, and N. A. Issa, Appl. Phys. Lett. 84, 1689 (2004).
[CrossRef]

Russell, P. St. J.

B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, and A. H. Greenaway, Electron. Lett. 36, 1358 (2000).
[CrossRef]

Taru, T.

Town, G. E.

Toyoda, T.

T. Toyoda and M. Yabe, J. Phys. D 16, L97 (1983).
[CrossRef]

van Eijkelenborg, M. A.

W. E. P. Paddena, M. A. van Eijkelenborg, A. Argyros, and N. A. Issa, Appl. Phys. Lett. 84, 1689 (2004).
[CrossRef]

Wang, D. N.

Y. Wang, C. R. Liao, and D. N. Wang, Opt. Express 18, 18056 (2010).
[CrossRef] [PubMed]

Y. Wang, Y. Li, C. Liao, D. N. Wang, M. Yang, and P. Lu, IEEE Photon. Technol. Lett. 22, 39 (2010).
[CrossRef]

Wang, Y.

Y. Wang, Y. Li, C. Liao, D. N. Wang, M. Yang, and P. Lu, IEEE Photon. Technol. Lett. 22, 39 (2010).
[CrossRef]

Y. Wang, C. R. Liao, and D. N. Wang, Opt. Express 18, 18056 (2010).
[CrossRef] [PubMed]

Wang, Z.

Wu, D. K. C.

Xu, F.

J. I. Kou, Z. D. Huang, G. Zhu, F. Xu, and Y. Q. Lu, “Wave guiding properties and sensitivity of D-shaped optical fiber microwire devices,” Appl. Phys. B (to be published).

Yabe, M.

T. Toyoda and M. Yabe, J. Phys. D 16, L97 (1983).
[CrossRef]

Yang, M.

Y. Wang, Y. Li, C. Liao, D. N. Wang, M. Yang, and P. Lu, IEEE Photon. Technol. Lett. 22, 39 (2010).
[CrossRef]

Yuan, W.

Zhu, G.

J. I. Kou, Z. D. Huang, G. Zhu, F. Xu, and Y. Q. Lu, “Wave guiding properties and sensitivity of D-shaped optical fiber microwire devices,” Appl. Phys. B (to be published).

Zou, B.

Appl. Phys. B (1)

J. I. Kou, Z. D. Huang, G. Zhu, F. Xu, and Y. Q. Lu, “Wave guiding properties and sensitivity of D-shaped optical fiber microwire devices,” Appl. Phys. B (to be published).

Appl. Phys. Lett. (1)

W. E. P. Paddena, M. A. van Eijkelenborg, A. Argyros, and N. A. Issa, Appl. Phys. Lett. 84, 1689 (2004).
[CrossRef]

Electron. Lett. (1)

B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, and A. H. Greenaway, Electron. Lett. 36, 1358 (2000).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

Y. Wang, Y. Li, C. Liao, D. N. Wang, M. Yang, and P. Lu, IEEE Photon. Technol. Lett. 22, 39 (2010).
[CrossRef]

IEEE Sens. J. (1)

W. Yuan, G. E. Town, and O. Bang, IEEE Sens. J. 10, 1192(2010).
[CrossRef]

J. Lightwave Technol. (1)

J. Phys. D (1)

T. Toyoda and M. Yabe, J. Phys. D 16, L97 (1983).
[CrossRef]

Opt. Express (3)

Opt. Lett. (2)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Cross section of PCF with two holes infiltrated.

Fig. 2
Fig. 2

Transmission spectra for different PCF lengths.

Fig. 3
Fig. 3

Simulation of the first four mode fields of PCF with two adjacent holes infiltrate, only y-polarization state is plotted.

Fig. 4
Fig. 4

Dispersion curves of fiber modes shown in Fig. 3.

Fig. 5
Fig. 5

Fringe wavelength shift with differ ent PCF lengths: circles, 3.4 cm ; squares, 1.8 cm ; lines, linear fitted.

Fig. 6
Fig. 6

Simulated thermo coefficients of the PCF fundamental mode (circles) and the “virtual core” mode (squares); dotted lines, linear fit of the simulation results.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

FSR = λ 2 Δ n eff L ,
d λ d T = λ n eff 1 n eff 2 ( d n eff 1 d T d n eff 2 d T ) ,

Metrics