Abstract

We propose and demonstrate data exchange in both the wavelength and time domains at a fine granularity, i.e., low-speed tributary channel exchange of wavelength-division multiplexed high-speed optical time-division multiplexed signals. Using the parametric depletion effect of cascaded second-order nonlinear interactions in a periodically poled lithium niobate (PPLN) waveguide, we experimentally implement 10 Gbit/s tributary channel exchange between two 160 Gbit/s signals with a power penalty of less than 4 dB at a bit-error rate of 10−9. Moreover, taking into account the waveguide propagation loss, we derive analytical solutions to investigate the signal depletion (SD) and extinction ratio (ER) performance of the PPLN-based data exchange. The theoretical analyses indicate that low waveguide propagation loss benefits large achievable SD and ER.

© 2011 Optical Society of America

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription