Abstract

We present high power results of a Yb-doped fiber amplifier seeded with a combination of broad and single- frequency laser signals. This two-tone concept was used in conjunction with externally applied or intrinsically formed thermal gradients to demonstrate combined stimulated Brillouin scattering suppression in a copumped monolithic, polarization-maintaining (PM) fiber. Depending on the input parameters and the thermal gradient, the output power of the single-frequency signal ranged from 80 to 203W with slope efficiencies from 70% to 80%. The 203W amplifier was pump limited and is, to the best of our knowledge, the highest reported in the literature for monolithic, PM single-frequency fiber amplifiers.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. P. Machewirth, Q. Wang, B. Samson, K. Tankala, M. O’Conner, and M. Alam, Proc. SPIE 6453, 64531F (2007).
    [CrossRef]
  2. I. Dajani, C. Zeringue, and T. M. Shay, IEEE J. Sel. Top. Quantum Electron. 15, 406 (2009).
    [CrossRef]
  3. I. Dajani, C. Zeringue, C. Lu, C. Vergien, L. Henry, and C. Robin, Opt. Lett. 35, 3114 (2010).
    [CrossRef] [PubMed]
  4. Y. Jeong, J. Nilsson, J. K. Sahu, D. N. Payne, R. Horley, L. M. B. Hickey, and P. W. Turner, IEEE J. Sel. Top. Quantum Electron. 13, 546 (2007).
    [CrossRef]

2010 (1)

2009 (1)

I. Dajani, C. Zeringue, and T. M. Shay, IEEE J. Sel. Top. Quantum Electron. 15, 406 (2009).
[CrossRef]

2007 (2)

D. P. Machewirth, Q. Wang, B. Samson, K. Tankala, M. O’Conner, and M. Alam, Proc. SPIE 6453, 64531F (2007).
[CrossRef]

Y. Jeong, J. Nilsson, J. K. Sahu, D. N. Payne, R. Horley, L. M. B. Hickey, and P. W. Turner, IEEE J. Sel. Top. Quantum Electron. 13, 546 (2007).
[CrossRef]

Alam, M.

D. P. Machewirth, Q. Wang, B. Samson, K. Tankala, M. O’Conner, and M. Alam, Proc. SPIE 6453, 64531F (2007).
[CrossRef]

Dajani, I.

I. Dajani, C. Zeringue, C. Lu, C. Vergien, L. Henry, and C. Robin, Opt. Lett. 35, 3114 (2010).
[CrossRef] [PubMed]

I. Dajani, C. Zeringue, and T. M. Shay, IEEE J. Sel. Top. Quantum Electron. 15, 406 (2009).
[CrossRef]

Henry, L.

Hickey, L. M. B.

Y. Jeong, J. Nilsson, J. K. Sahu, D. N. Payne, R. Horley, L. M. B. Hickey, and P. W. Turner, IEEE J. Sel. Top. Quantum Electron. 13, 546 (2007).
[CrossRef]

Horley, R.

Y. Jeong, J. Nilsson, J. K. Sahu, D. N. Payne, R. Horley, L. M. B. Hickey, and P. W. Turner, IEEE J. Sel. Top. Quantum Electron. 13, 546 (2007).
[CrossRef]

Jeong, Y.

Y. Jeong, J. Nilsson, J. K. Sahu, D. N. Payne, R. Horley, L. M. B. Hickey, and P. W. Turner, IEEE J. Sel. Top. Quantum Electron. 13, 546 (2007).
[CrossRef]

Lu, C.

Machewirth, D. P.

D. P. Machewirth, Q. Wang, B. Samson, K. Tankala, M. O’Conner, and M. Alam, Proc. SPIE 6453, 64531F (2007).
[CrossRef]

Nilsson, J.

Y. Jeong, J. Nilsson, J. K. Sahu, D. N. Payne, R. Horley, L. M. B. Hickey, and P. W. Turner, IEEE J. Sel. Top. Quantum Electron. 13, 546 (2007).
[CrossRef]

O’Conner, M.

D. P. Machewirth, Q. Wang, B. Samson, K. Tankala, M. O’Conner, and M. Alam, Proc. SPIE 6453, 64531F (2007).
[CrossRef]

Payne, D. N.

Y. Jeong, J. Nilsson, J. K. Sahu, D. N. Payne, R. Horley, L. M. B. Hickey, and P. W. Turner, IEEE J. Sel. Top. Quantum Electron. 13, 546 (2007).
[CrossRef]

Robin, C.

Sahu, J. K.

Y. Jeong, J. Nilsson, J. K. Sahu, D. N. Payne, R. Horley, L. M. B. Hickey, and P. W. Turner, IEEE J. Sel. Top. Quantum Electron. 13, 546 (2007).
[CrossRef]

Samson, B.

D. P. Machewirth, Q. Wang, B. Samson, K. Tankala, M. O’Conner, and M. Alam, Proc. SPIE 6453, 64531F (2007).
[CrossRef]

Shay, T. M.

I. Dajani, C. Zeringue, and T. M. Shay, IEEE J. Sel. Top. Quantum Electron. 15, 406 (2009).
[CrossRef]

Tankala, K.

D. P. Machewirth, Q. Wang, B. Samson, K. Tankala, M. O’Conner, and M. Alam, Proc. SPIE 6453, 64531F (2007).
[CrossRef]

Turner, P. W.

Y. Jeong, J. Nilsson, J. K. Sahu, D. N. Payne, R. Horley, L. M. B. Hickey, and P. W. Turner, IEEE J. Sel. Top. Quantum Electron. 13, 546 (2007).
[CrossRef]

Vergien, C.

Wang, Q.

D. P. Machewirth, Q. Wang, B. Samson, K. Tankala, M. O’Conner, and M. Alam, Proc. SPIE 6453, 64531F (2007).
[CrossRef]

Zeringue, C.

I. Dajani, C. Zeringue, C. Lu, C. Vergien, L. Henry, and C. Robin, Opt. Lett. 35, 3114 (2010).
[CrossRef] [PubMed]

I. Dajani, C. Zeringue, and T. M. Shay, IEEE J. Sel. Top. Quantum Electron. 15, 406 (2009).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (2)

I. Dajani, C. Zeringue, and T. M. Shay, IEEE J. Sel. Top. Quantum Electron. 15, 406 (2009).
[CrossRef]

Y. Jeong, J. Nilsson, J. K. Sahu, D. N. Payne, R. Horley, L. M. B. Hickey, and P. W. Turner, IEEE J. Sel. Top. Quantum Electron. 13, 546 (2007).
[CrossRef]

Opt. Lett. (1)

Proc. SPIE (1)

D. P. Machewirth, Q. Wang, B. Samson, K. Tankala, M. O’Conner, and M. Alam, Proc. SPIE 6453, 64531F (2007).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Experimental setup of monolithic two-tone fiber amplifier system. PD 1, PD 2, PD 3, and PD 4 are photodiodes. ISO 1 and ISO 2 are isolators. PM 1, PM 2, and PM 3 are power meters.

Fig. 2
Fig. 2

Reflectivity versus 1065 nm signal output power for monolithic amplifier in different thermal configurations: single- tone all on cold spool, 1035 nm two-tone all on cold spool, and 1035 nm two-tone with 6 m on cold spool and 1 m left to cool in air under ambient conditions (thus utilizing quantum defect heating).

Fig. 3
Fig. 3

Comparison of output power in the single-frequency 1065 nm channel versus launched power for the single-tone configuration and the two-tone thermal configuration utilizing quantum defect heating. The broadband seed for the latter operated at 1035 nm .

Fig. 4
Fig. 4

Output power as a function of launch power and reflectivity the for hot and cold plate configuration with the broadband seed operating at 1040 nm .

Fig. 5
Fig. 5

Spectral content of the backscattered light at various signal output powers for the hot and cold plate configuration. The slope efficiency is shown in the inset. The broadband wavelength in this case is 1035 nm .

Metrics