Abstract

A self-mixing (SM) laser displacement sensor coupled with a microelectromechanical system (MEMS) accelerometer is presented that enables reliable displacement measurements even in the case of a nonstationary laser head. The proposed technique allows the use of SM-based sensors for embedded applications. The system resolution is currently limited to approximately 300nm due to the noise characteristics of the currently used accelerometer. It is shown that this resolution can be greatly improved by the use of a low noise accelerometer.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. Giuliani, M. Norgia, S. Donati, and T. Bosch, J. Opt. A 4, 283 (2002).
    [CrossRef]
  2. C. Bes, G. Plantier, and T. Bosch, IEEE Trans. Instrum. Meas. 55, 1101 (2006).
    [CrossRef]
  3. S. Donati, M. Norgia, and G. Giuliani, Appl. Opt. 45, 7264 (2006).
    [CrossRef] [PubMed]

2006 (2)

C. Bes, G. Plantier, and T. Bosch, IEEE Trans. Instrum. Meas. 55, 1101 (2006).
[CrossRef]

S. Donati, M. Norgia, and G. Giuliani, Appl. Opt. 45, 7264 (2006).
[CrossRef] [PubMed]

2002 (1)

G. Giuliani, M. Norgia, S. Donati, and T. Bosch, J. Opt. A 4, 283 (2002).
[CrossRef]

Bes, C.

C. Bes, G. Plantier, and T. Bosch, IEEE Trans. Instrum. Meas. 55, 1101 (2006).
[CrossRef]

Bosch, T.

C. Bes, G. Plantier, and T. Bosch, IEEE Trans. Instrum. Meas. 55, 1101 (2006).
[CrossRef]

G. Giuliani, M. Norgia, S. Donati, and T. Bosch, J. Opt. A 4, 283 (2002).
[CrossRef]

Donati, S.

S. Donati, M. Norgia, and G. Giuliani, Appl. Opt. 45, 7264 (2006).
[CrossRef] [PubMed]

G. Giuliani, M. Norgia, S. Donati, and T. Bosch, J. Opt. A 4, 283 (2002).
[CrossRef]

Giuliani, G.

S. Donati, M. Norgia, and G. Giuliani, Appl. Opt. 45, 7264 (2006).
[CrossRef] [PubMed]

G. Giuliani, M. Norgia, S. Donati, and T. Bosch, J. Opt. A 4, 283 (2002).
[CrossRef]

Norgia, M.

S. Donati, M. Norgia, and G. Giuliani, Appl. Opt. 45, 7264 (2006).
[CrossRef] [PubMed]

G. Giuliani, M. Norgia, S. Donati, and T. Bosch, J. Opt. A 4, 283 (2002).
[CrossRef]

Plantier, G.

C. Bes, G. Plantier, and T. Bosch, IEEE Trans. Instrum. Meas. 55, 1101 (2006).
[CrossRef]

Appl. Opt. (1)

IEEE Trans. Instrum. Meas. (1)

C. Bes, G. Plantier, and T. Bosch, IEEE Trans. Instrum. Meas. 55, 1101 (2006).
[CrossRef]

J. Opt. A (1)

G. Giuliani, M. Norgia, S. Donati, and T. Bosch, J. Opt. A 4, 283 (2002).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

SSA-SM displacement sensor setup.

Fig. 2
Fig. 2

Theoretical displacement resolution given by an accelerometer versus the accelerometer noise power spectrum density for 1, 10, and 20 Hz low cutoff frequencies.

Fig. 3
Fig. 3

(a)  D Σ for f Shaker = 225 Hz and f PZT = 47 Hz . Accelerometer signal: (b) X axis; (c) Y axis; (d) Z axis. (e)  D PZT (red solid curve) and D PZT c (dotted blue curve).

Fig. 4
Fig. 4

Measured and reconstructed displacement signals for f Shaker = 81 Hz and f PZT = 81 Hz .

Fig. 5
Fig. 5

(a)  D Σ for f PZT = 91 Hz and f Shaker = 46 , 92, 194, and 276 Hz . (b)  D PZT (dotted red curve) and D PZT c (solid blue curve). (c) Residual error for 20 500 Hz bandwidth.

Fig. 6
Fig. 6

Displacement correction for SSA-SM sensor embedded on an air compressor.

Tables (1)

Tables Icon

Table 1 Corrected Displacement rms Error ξ PZT c as Compared to the D PZT of 2.5 μm Amplitude

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

D Σ ( t ) = D PZT ( t ) + D s ( t ) = N λ 2 + ϵ ,
D s ( t ) = 0 t 0 u a c c ( v ) d v d u + D s ( 0 ) .
S D s ( s ) = S a c c ( s ) s 4 .
ξ max A 2 2 Δ Φ 2 + Δ G 2 G 2 .

Metrics