Abstract

We present an unconventional experimental approach for detecting saturated absorption spectroscopy. Using this approach, crossover peaks are displaced, leaving out peaks corresponding to an atom’s natural resonant frequencies. Sensitivity of detection can also be enhanced. Consequently, the spectrum could reflect the energy structure of atoms more explicitly. Without harmful influence from crossovers, the locking range of the error signal is significantly increased and the symmetry of the dispersion line shape is perfectly preserved, so reliability of frequency stabilization can be improved.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. V. G. Minogin and V. S. Letokhov, Laser Light Pressure on Atoms (Gordon and Breach, 1987).
  2. H. J. Metcalf and P. van der Straten, Laser Cooling and Trapping (Springer-Verlag, 1999).
    [CrossRef]
  3. S. Chu and C. Wieman, J. Opt. Soc. Am. B 6, 2020 (1989).
  4. O. Schmidt, K.-M. Knaak, R. Wynands, and D. Meschede, Appl. Phys. B 59, 167 (1994).
    [CrossRef]
  5. L. A. Bloomfield, H. Gerhardt, T. W. Hänsch, and S. C. Rand, Opt. Commun. 42, 247 (1982).
    [CrossRef]
  6. D. A. Steck, “Rubidium 85 D line data,” http://steck.us/alkalidata.
  7. K. B. MacAdam, A. Steinbach, and C. Wieman, Am. J. Phys. 60, 1098 (1992).
    [CrossRef]
  8. H. Patrick and C. E. Wieman, Rev. Sci. Instrum. 62, 2593 (1991).
    [CrossRef]

1994 (1)

O. Schmidt, K.-M. Knaak, R. Wynands, and D. Meschede, Appl. Phys. B 59, 167 (1994).
[CrossRef]

1992 (1)

K. B. MacAdam, A. Steinbach, and C. Wieman, Am. J. Phys. 60, 1098 (1992).
[CrossRef]

1991 (1)

H. Patrick and C. E. Wieman, Rev. Sci. Instrum. 62, 2593 (1991).
[CrossRef]

1989 (1)

1982 (1)

L. A. Bloomfield, H. Gerhardt, T. W. Hänsch, and S. C. Rand, Opt. Commun. 42, 247 (1982).
[CrossRef]

Bloomfield, L. A.

L. A. Bloomfield, H. Gerhardt, T. W. Hänsch, and S. C. Rand, Opt. Commun. 42, 247 (1982).
[CrossRef]

Chu, S.

Gerhardt, H.

L. A. Bloomfield, H. Gerhardt, T. W. Hänsch, and S. C. Rand, Opt. Commun. 42, 247 (1982).
[CrossRef]

Hänsch, T. W.

L. A. Bloomfield, H. Gerhardt, T. W. Hänsch, and S. C. Rand, Opt. Commun. 42, 247 (1982).
[CrossRef]

Knaak, K.-M.

O. Schmidt, K.-M. Knaak, R. Wynands, and D. Meschede, Appl. Phys. B 59, 167 (1994).
[CrossRef]

Letokhov, V. S.

V. G. Minogin and V. S. Letokhov, Laser Light Pressure on Atoms (Gordon and Breach, 1987).

MacAdam, K. B.

K. B. MacAdam, A. Steinbach, and C. Wieman, Am. J. Phys. 60, 1098 (1992).
[CrossRef]

Meschede, D.

O. Schmidt, K.-M. Knaak, R. Wynands, and D. Meschede, Appl. Phys. B 59, 167 (1994).
[CrossRef]

Metcalf, H. J.

H. J. Metcalf and P. van der Straten, Laser Cooling and Trapping (Springer-Verlag, 1999).
[CrossRef]

Minogin, V. G.

V. G. Minogin and V. S. Letokhov, Laser Light Pressure on Atoms (Gordon and Breach, 1987).

Patrick, H.

H. Patrick and C. E. Wieman, Rev. Sci. Instrum. 62, 2593 (1991).
[CrossRef]

Rand, S. C.

L. A. Bloomfield, H. Gerhardt, T. W. Hänsch, and S. C. Rand, Opt. Commun. 42, 247 (1982).
[CrossRef]

Schmidt, O.

O. Schmidt, K.-M. Knaak, R. Wynands, and D. Meschede, Appl. Phys. B 59, 167 (1994).
[CrossRef]

Steck, D. A.

D. A. Steck, “Rubidium 85 D line data,” http://steck.us/alkalidata.

Steinbach, A.

K. B. MacAdam, A. Steinbach, and C. Wieman, Am. J. Phys. 60, 1098 (1992).
[CrossRef]

van der Straten, P.

H. J. Metcalf and P. van der Straten, Laser Cooling and Trapping (Springer-Verlag, 1999).
[CrossRef]

Wieman, C.

K. B. MacAdam, A. Steinbach, and C. Wieman, Am. J. Phys. 60, 1098 (1992).
[CrossRef]

S. Chu and C. Wieman, J. Opt. Soc. Am. B 6, 2020 (1989).

Wieman, C. E.

H. Patrick and C. E. Wieman, Rev. Sci. Instrum. 62, 2593 (1991).
[CrossRef]

Wynands, R.

O. Schmidt, K.-M. Knaak, R. Wynands, and D. Meschede, Appl. Phys. B 59, 167 (1994).
[CrossRef]

Am. J. Phys. (1)

K. B. MacAdam, A. Steinbach, and C. Wieman, Am. J. Phys. 60, 1098 (1992).
[CrossRef]

Appl. Phys. B (1)

O. Schmidt, K.-M. Knaak, R. Wynands, and D. Meschede, Appl. Phys. B 59, 167 (1994).
[CrossRef]

J. Opt. Soc. Am. B (1)

Opt. Commun. (1)

L. A. Bloomfield, H. Gerhardt, T. W. Hänsch, and S. C. Rand, Opt. Commun. 42, 247 (1982).
[CrossRef]

Rev. Sci. Instrum. (1)

H. Patrick and C. E. Wieman, Rev. Sci. Instrum. 62, 2593 (1991).
[CrossRef]

Other (3)

D. A. Steck, “Rubidium 85 D line data,” http://steck.us/alkalidata.

V. G. Minogin and V. S. Letokhov, Laser Light Pressure on Atoms (Gordon and Breach, 1987).

H. J. Metcalf and P. van der Straten, Laser Cooling and Trapping (Springer-Verlag, 1999).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

How to move crossovers. ν probe = ( ν 1 + ν 2 ) / 2 . PD, photodiode. (a) Experimental setup. (b) Appearance of crossover in conventional SAS. (c) Removal of crossover.

Fig. 2
Fig. 2

Setup of our experiment. ISO, isolator; ATT, attenuator; HWP, half-wave plate; PBS, polarizing beam splitter; PD, photodiode.

Fig. 3
Fig. 3

Experimental results. (a) Conventional SAS. CO(1,2) is short for crossover of F = 2 F = 1 and F = 2 F = 2 . (b) Corresponding error signals of conventional SAS in (a). (c) Spectrum of our experiment. (d) Corresponding error signals of our spectrum in (c).

Fig. 4
Fig. 4

Velocity classes of atoms employed by two beams. Dashed lines represent velocity classes of atoms employed by the probe beam and solid lines represent those of the pump beam. (a) Conventional SAS. (b) Our experiment; as its frequency is stabilized, the pump beam employs atoms of three fixed velocities.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

v z 1 , probe = λ ( ν probe ν 1 ) = λ Δ ν 2
v z 2 , probe = λ ( ν probe ν 2 ) = λ Δ ν 2
v z 1 , pump = λ ( ν pump ν 1 ) = λ Δ ν 2 = v z 2 , probe
v z 2 , pump = λ ( ν pump ν 2 ) = λ Δ ν 2 = v z 1 , probe
v z 1 , pump = λ ( ν pump ν 1 ) > λ Δ ν 2 = v z 2 , probe
v z 2 , pump = λ ( ν pump ν 2 ) > λ Δ ν 2 = v z 1 , probe
v z = λ ( ν c ν a ) λ × 93 MHz 73 m · s 1 ,

Metrics