Abstract

A polarization-independent and high-diffraction-efficiency Fresnel lens is developed based on blue phase liquid crystals (BPLCs). The optically isotropic characteristic of BPLCs is used to produce a polarization-independent Fresnel lens. The small optical phase shift of BPLCs that is induced by the Kerr effect is sufficient for the BPLC Fresnel lens to have high theoretical and experimental diffraction efficiencies of 41% and 34%, respectively. An electrically erasable memory effect in the focusing diffraction at an electric field E>4.44V/μm is observed. The electro-optical properties of the BPLC Fresnel lens are analyzed and discussed.

© 2011 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Polarization-independent and fast tunable microlens array based on blue phase liquid crystals

Shih-Hung Lin, Lin-Song Huang, Chi-Huang Lin, and Chie-Tong Kuo
Opt. Express 22(1) 925-930 (2014)

Electrically tunable microlens arrays based on polarization-independent optical phase of nano liquid crystal droplets dispersed in polymer matrix

Ji Hoon Yu, Hung-Shan Chen, Po-Ju Chen, Ki Hoon Song, Seong Cheol Noh, Jae Myeong Lee, Hongwen Ren, Yi-Hsin Lin, and Seung Hee Lee
Opt. Express 23(13) 17337-17344 (2015)

Highly efficient and polarization-independent Fresnel lens based on dye-doped liquid crystal

Liang-Chen Lin, Hung-Chang Jau, Tsung-Hsien Lin, and Andy Y.-G. Fuh
Opt. Express 15(6) 2900-2906 (2007)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (4)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (2)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription