Abstract

We here propose the concept of enhanced evanescent tunneling (EET). Our analysis indicates that by means of a suitable control field, the transmission of evanescent waves across a forbidden gap can be enhanced by several orders of magnitude—well beyond the ordinary frustrated total internal reflection case. We show how such a phenomenon can be used to probe both the amplitude and phase of the evanescent portion of the angular spectrum, thereby allowing target superresolution. In principle EET can be manifested in other areas of physics where wave tunneling is involved.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. Abbe, Arch. Mikrosk. Anat. 9, 413 (1873).
    [CrossRef]
  2. E. A. Ash and G. Nicholls, Nature 237, 510 (1972).
    [CrossRef] [PubMed]
  3. S. W. Hell and J. Wichmann, Opt. Lett. 19, 780 (1994).
    [CrossRef] [PubMed]
  4. X. Zhuang, Nat. Photon. 3, 365 (2009).
    [CrossRef]
  5. A. Pertsinidis, Y. Zhang, and S. Chu, Nature 466, 647 (2010).
    [CrossRef] [PubMed]
  6. A. Salandrino and N. Engheta, Phys. Rev. B 74, 075103 (2006).
    [CrossRef]
  7. Z. Jacob, L. V. Alekseyev, and E. Narimanov, Opt. Express 14, 8247 (2006).
    [CrossRef] [PubMed]
  8. Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, Science 315, 1686 (2007).
    [CrossRef] [PubMed]
  9. S. Gazit, A. Szameit, Y. C. Eldar, and M. Segev, Opt. Express 17, 23920 (2009).
    [CrossRef]
  10. Q. Wu, G. D. Feke, R. D. Grober, and L. P. Ghislain, Appl. Phys. Lett. 75, 4064 (1999).
    [CrossRef]

2010 (1)

A. Pertsinidis, Y. Zhang, and S. Chu, Nature 466, 647 (2010).
[CrossRef] [PubMed]

2009 (2)

2007 (1)

Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, Science 315, 1686 (2007).
[CrossRef] [PubMed]

2006 (2)

1999 (1)

Q. Wu, G. D. Feke, R. D. Grober, and L. P. Ghislain, Appl. Phys. Lett. 75, 4064 (1999).
[CrossRef]

1994 (1)

1972 (1)

E. A. Ash and G. Nicholls, Nature 237, 510 (1972).
[CrossRef] [PubMed]

1873 (1)

E. Abbe, Arch. Mikrosk. Anat. 9, 413 (1873).
[CrossRef]

Abbe, E.

E. Abbe, Arch. Mikrosk. Anat. 9, 413 (1873).
[CrossRef]

Alekseyev, L. V.

Ash, E. A.

E. A. Ash and G. Nicholls, Nature 237, 510 (1972).
[CrossRef] [PubMed]

Chu, S.

A. Pertsinidis, Y. Zhang, and S. Chu, Nature 466, 647 (2010).
[CrossRef] [PubMed]

Eldar, Y. C.

Engheta, N.

A. Salandrino and N. Engheta, Phys. Rev. B 74, 075103 (2006).
[CrossRef]

Feke, G. D.

Q. Wu, G. D. Feke, R. D. Grober, and L. P. Ghislain, Appl. Phys. Lett. 75, 4064 (1999).
[CrossRef]

Gazit, S.

Ghislain, L. P.

Q. Wu, G. D. Feke, R. D. Grober, and L. P. Ghislain, Appl. Phys. Lett. 75, 4064 (1999).
[CrossRef]

Grober, R. D.

Q. Wu, G. D. Feke, R. D. Grober, and L. P. Ghislain, Appl. Phys. Lett. 75, 4064 (1999).
[CrossRef]

Hell, S. W.

Jacob, Z.

Lee, H.

Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, Science 315, 1686 (2007).
[CrossRef] [PubMed]

Liu, Z.

Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, Science 315, 1686 (2007).
[CrossRef] [PubMed]

Narimanov, E.

Nicholls, G.

E. A. Ash and G. Nicholls, Nature 237, 510 (1972).
[CrossRef] [PubMed]

Pertsinidis, A.

A. Pertsinidis, Y. Zhang, and S. Chu, Nature 466, 647 (2010).
[CrossRef] [PubMed]

Salandrino, A.

A. Salandrino and N. Engheta, Phys. Rev. B 74, 075103 (2006).
[CrossRef]

Segev, M.

Sun, C.

Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, Science 315, 1686 (2007).
[CrossRef] [PubMed]

Szameit, A.

Wichmann, J.

Wu, Q.

Q. Wu, G. D. Feke, R. D. Grober, and L. P. Ghislain, Appl. Phys. Lett. 75, 4064 (1999).
[CrossRef]

Xiong, Y.

Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, Science 315, 1686 (2007).
[CrossRef] [PubMed]

Zhang, X.

Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, Science 315, 1686 (2007).
[CrossRef] [PubMed]

Zhang, Y.

A. Pertsinidis, Y. Zhang, and S. Chu, Nature 466, 647 (2010).
[CrossRef] [PubMed]

Zhuang, X.

X. Zhuang, Nat. Photon. 3, 365 (2009).
[CrossRef]

Appl. Phys. Lett. (1)

Q. Wu, G. D. Feke, R. D. Grober, and L. P. Ghislain, Appl. Phys. Lett. 75, 4064 (1999).
[CrossRef]

Arch. Mikrosk. Anat. (1)

E. Abbe, Arch. Mikrosk. Anat. 9, 413 (1873).
[CrossRef]

Nat. Photon. (1)

X. Zhuang, Nat. Photon. 3, 365 (2009).
[CrossRef]

Nature (2)

A. Pertsinidis, Y. Zhang, and S. Chu, Nature 466, 647 (2010).
[CrossRef] [PubMed]

E. A. Ash and G. Nicholls, Nature 237, 510 (1972).
[CrossRef] [PubMed]

Opt. Express (2)

Opt. Lett. (1)

Phys. Rev. B (1)

A. Salandrino and N. Engheta, Phys. Rev. B 74, 075103 (2006).
[CrossRef]

Science (1)

Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, Science 315, 1686 (2007).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

(a) Evanescent tunneling through a gap by FTIR, (b) EET.

Fig. 2
Fig. 2

Power flow across a 3 μm air gap between two silicon half-spaces.

Fig. 3
Fig. 3

EET in an imaging setup.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

P z = 2 k z 2 α k 0 η 0 k z α ( A S 2 A A 2 ) [ 2 k z α cosh ( α d ) ] 2 + [ ( k z 2 α 2 ) sinh ( α d ) ] 2 + 2 k z 2 α k 0 η 0 ( k z 2 + α 2 ) sinh ( α d ) A S A A sin ( Δ φ A S ) [ 2 k z α cosh ( α d ) ] 2 + [ ( k z 2 α 2 ) sinh ( α d ) ] 2 .
I = n A A 2 2 η 0 + 2 e 2 α d n α 2 A S 2 ( k z 2 + α 2 ) η 0 + 2 e α d n α [ k z sin ( Δ φ A S ) α cos ( Δ φ A S ) ] ( k z 2 + α 2 ) η 0 A A A S .
I EET = 4 e α d α 2 k z n η ( α 2 + k z 2 ) 3 / 2 A A A S .
I = η 0 A A 2 2 n + 2 η 0 e 2 α d n 3 α 2 A S 2 ( k z 2 + α 2 n 4 ) + 2 η 0 e α d n α [ k z sin ( Δ φ A S ) α n 2 cos ( Δ φ A S ) ] ( k z 2 + α 2 n 4 ) A A A S ,

Metrics