Abstract

The frequency stability of a cw optical parametric oscillator (cw OPO) near the signal–idler degeneracy has been studied. The strong tendency of a near-degenerate OPO to mode hop has been suppressed by using a bulk Bragg grating as a spectral filter in the OPO cavity. An experimental demonstration of stable parametric oscillation in a single longitudinal mode of the OPO cavity is reported, together with the capability of tuning the signal–idler difference frequency from 1 to 4THz. The OPO has potential use in cw terahertz generation.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. R. Brown, K. A. McIntosh, K. B. Nichols, and C. L. Dennis, Appl. Phys. Lett. 66, 285 (1995).
    [CrossRef]
  2. R. Sowade, I. Breunig, I. C. Mayorga, J. Kiessling, C. Tulea, V. Dierolf, and K. Buse, Opt. Express 17, 22303 (2009).
    [CrossRef]
  3. I. Breunig, J. Kiessling, R. Sowade, B. Knabe, and K. Buse, New J. Phys. 10, 073003 (2008).
    [CrossRef]
  4. J. E. Schaar, K. L. Vodopyanov, and M. M. Fejer, Opt. Lett. 32, 1284 (2007).
    [CrossRef] [PubMed]
  5. J. Saikawa, M. Fujii, H. Ishizuki, and T. Taira, Opt. Lett. 32, 2996 (2007).
    [CrossRef] [PubMed]
  6. B. Jacobsson, V. Pasiskevicius, F. Laurell, E. Rotari, V. Smirnov, and L. Glebov, Opt. Lett. 34, 449 (2009).
    [CrossRef] [PubMed]
  7. W. R. Bosenberg, A. Drobshoff, J. I. Alexander, L. E. Myers, and R. L. Byer, Opt. Lett. 21, 1336 (1996).
    [CrossRef] [PubMed]
  8. M. Vainio, J. Peltola, S. Persijn, F. J. M. Harren, and L. Halonen, Appl. Phys. B 94, 411 (2008).
    [CrossRef]
  9. G. D. Boyd and D. A. Kleinman, J. Appl. Phys. 39, 3597 (1968).
    [CrossRef]
  10. M. Vainio, M. Siltanen, T. Hieta, and L. Halonen, Opt. Lett. 35, 1527 (2010).
    [CrossRef] [PubMed]
  11. J. E. Hellström, B. Jacobsson, V. Pasiskevicius, and F. Laurell, IEEE J. Quantum Electron. 44, 81 (2008).
    [CrossRef]
  12. L. E. Myers, R. C. Eckardt, M. M. Fejer, R. L. Byer, W. R. Bosenberg, and J. W. Pierce, J. Opt. Soc. Am. B 12, 2102 (1995).
    [CrossRef]
  13. O. Gayer, Z. Sacks, E. Galun, and A. Arie, Appl. Phys. B 91, 343 (2008).
    [CrossRef]
  14. S. E. Harris, Proc. IEEE 57, 2096 (1969).
    [CrossRef]
  15. K. L. Vodopyanov, Laser Photon. Rev. 2, 11 (2008).
    [CrossRef]

2010

2009

2008

I. Breunig, J. Kiessling, R. Sowade, B. Knabe, and K. Buse, New J. Phys. 10, 073003 (2008).
[CrossRef]

M. Vainio, J. Peltola, S. Persijn, F. J. M. Harren, and L. Halonen, Appl. Phys. B 94, 411 (2008).
[CrossRef]

J. E. Hellström, B. Jacobsson, V. Pasiskevicius, and F. Laurell, IEEE J. Quantum Electron. 44, 81 (2008).
[CrossRef]

O. Gayer, Z. Sacks, E. Galun, and A. Arie, Appl. Phys. B 91, 343 (2008).
[CrossRef]

K. L. Vodopyanov, Laser Photon. Rev. 2, 11 (2008).
[CrossRef]

2007

1996

1995

1969

S. E. Harris, Proc. IEEE 57, 2096 (1969).
[CrossRef]

1968

G. D. Boyd and D. A. Kleinman, J. Appl. Phys. 39, 3597 (1968).
[CrossRef]

Alexander, J. I.

Arie, A.

O. Gayer, Z. Sacks, E. Galun, and A. Arie, Appl. Phys. B 91, 343 (2008).
[CrossRef]

Bosenberg, W. R.

Boyd, G. D.

G. D. Boyd and D. A. Kleinman, J. Appl. Phys. 39, 3597 (1968).
[CrossRef]

Breunig, I.

Brown, E. R.

E. R. Brown, K. A. McIntosh, K. B. Nichols, and C. L. Dennis, Appl. Phys. Lett. 66, 285 (1995).
[CrossRef]

Buse, K.

Byer, R. L.

Dennis, C. L.

E. R. Brown, K. A. McIntosh, K. B. Nichols, and C. L. Dennis, Appl. Phys. Lett. 66, 285 (1995).
[CrossRef]

Dierolf, V.

Drobshoff, A.

Eckardt, R. C.

Fejer, M. M.

Fujii, M.

Galun, E.

O. Gayer, Z. Sacks, E. Galun, and A. Arie, Appl. Phys. B 91, 343 (2008).
[CrossRef]

Gayer, O.

O. Gayer, Z. Sacks, E. Galun, and A. Arie, Appl. Phys. B 91, 343 (2008).
[CrossRef]

Glebov, L.

Halonen, L.

M. Vainio, M. Siltanen, T. Hieta, and L. Halonen, Opt. Lett. 35, 1527 (2010).
[CrossRef] [PubMed]

M. Vainio, J. Peltola, S. Persijn, F. J. M. Harren, and L. Halonen, Appl. Phys. B 94, 411 (2008).
[CrossRef]

Harren, F. J. M.

M. Vainio, J. Peltola, S. Persijn, F. J. M. Harren, and L. Halonen, Appl. Phys. B 94, 411 (2008).
[CrossRef]

Harris, S. E.

S. E. Harris, Proc. IEEE 57, 2096 (1969).
[CrossRef]

Hellström, J. E.

J. E. Hellström, B. Jacobsson, V. Pasiskevicius, and F. Laurell, IEEE J. Quantum Electron. 44, 81 (2008).
[CrossRef]

Hieta, T.

Ishizuki, H.

Jacobsson, B.

B. Jacobsson, V. Pasiskevicius, F. Laurell, E. Rotari, V. Smirnov, and L. Glebov, Opt. Lett. 34, 449 (2009).
[CrossRef] [PubMed]

J. E. Hellström, B. Jacobsson, V. Pasiskevicius, and F. Laurell, IEEE J. Quantum Electron. 44, 81 (2008).
[CrossRef]

Kiessling, J.

Kleinman, D. A.

G. D. Boyd and D. A. Kleinman, J. Appl. Phys. 39, 3597 (1968).
[CrossRef]

Knabe, B.

I. Breunig, J. Kiessling, R. Sowade, B. Knabe, and K. Buse, New J. Phys. 10, 073003 (2008).
[CrossRef]

Laurell, F.

B. Jacobsson, V. Pasiskevicius, F. Laurell, E. Rotari, V. Smirnov, and L. Glebov, Opt. Lett. 34, 449 (2009).
[CrossRef] [PubMed]

J. E. Hellström, B. Jacobsson, V. Pasiskevicius, and F. Laurell, IEEE J. Quantum Electron. 44, 81 (2008).
[CrossRef]

Mayorga, I. C.

McIntosh, K. A.

E. R. Brown, K. A. McIntosh, K. B. Nichols, and C. L. Dennis, Appl. Phys. Lett. 66, 285 (1995).
[CrossRef]

Myers, L. E.

Nichols, K. B.

E. R. Brown, K. A. McIntosh, K. B. Nichols, and C. L. Dennis, Appl. Phys. Lett. 66, 285 (1995).
[CrossRef]

Pasiskevicius, V.

B. Jacobsson, V. Pasiskevicius, F. Laurell, E. Rotari, V. Smirnov, and L. Glebov, Opt. Lett. 34, 449 (2009).
[CrossRef] [PubMed]

J. E. Hellström, B. Jacobsson, V. Pasiskevicius, and F. Laurell, IEEE J. Quantum Electron. 44, 81 (2008).
[CrossRef]

Peltola, J.

M. Vainio, J. Peltola, S. Persijn, F. J. M. Harren, and L. Halonen, Appl. Phys. B 94, 411 (2008).
[CrossRef]

Persijn, S.

M. Vainio, J. Peltola, S. Persijn, F. J. M. Harren, and L. Halonen, Appl. Phys. B 94, 411 (2008).
[CrossRef]

Pierce, J. W.

Rotari, E.

Sacks, Z.

O. Gayer, Z. Sacks, E. Galun, and A. Arie, Appl. Phys. B 91, 343 (2008).
[CrossRef]

Saikawa, J.

Schaar, J. E.

Siltanen, M.

Smirnov, V.

Sowade, R.

Taira, T.

Tulea, C.

Vainio, M.

M. Vainio, M. Siltanen, T. Hieta, and L. Halonen, Opt. Lett. 35, 1527 (2010).
[CrossRef] [PubMed]

M. Vainio, J. Peltola, S. Persijn, F. J. M. Harren, and L. Halonen, Appl. Phys. B 94, 411 (2008).
[CrossRef]

Vodopyanov, K. L.

Appl. Phys. B

M. Vainio, J. Peltola, S. Persijn, F. J. M. Harren, and L. Halonen, Appl. Phys. B 94, 411 (2008).
[CrossRef]

O. Gayer, Z. Sacks, E. Galun, and A. Arie, Appl. Phys. B 91, 343 (2008).
[CrossRef]

Appl. Phys. Lett.

E. R. Brown, K. A. McIntosh, K. B. Nichols, and C. L. Dennis, Appl. Phys. Lett. 66, 285 (1995).
[CrossRef]

IEEE J. Quantum Electron.

J. E. Hellström, B. Jacobsson, V. Pasiskevicius, and F. Laurell, IEEE J. Quantum Electron. 44, 81 (2008).
[CrossRef]

J. Appl. Phys.

G. D. Boyd and D. A. Kleinman, J. Appl. Phys. 39, 3597 (1968).
[CrossRef]

J. Opt. Soc. Am. B

Laser Photon. Rev.

K. L. Vodopyanov, Laser Photon. Rev. 2, 11 (2008).
[CrossRef]

New J. Phys.

I. Breunig, J. Kiessling, R. Sowade, B. Knabe, and K. Buse, New J. Phys. 10, 073003 (2008).
[CrossRef]

Opt. Express

Opt. Lett.

Proc. IEEE

S. E. Harris, Proc. IEEE 57, 2096 (1969).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Theoretical phase-matching curves of the near-degenerate OPO at three different temperatures of the MgO:PPLN crystal. Poling period of the crystal is 20.5 µm .

Fig. 2
Fig. 2

Solid curves, calculated parametric gain of the singly resonant OPO with (a)  λ p = 796.25 nm , (b)  λ p = 796.75 nm , and (c)  λ p = 797.27 nm . Dashed curves, the same but with the pump wavelength shifted from λ p = 797.27 nm by ± 0.06 nm ( ± 28 GHz ). Vertical lines denote the signal wavelength, λ s , of the peak gain and the degeneracy wavelength, 2 λ p , for case (c). Crystal temperature T = 57.2 °C .

Fig. 3
Fig. 3

(a) Shift Δ ν s , PM of the phase-matched signal frequency near the degeneracy divided by the shift, Δ ν p , of the pump frequency from ν p = c / λ p , given as a function of λ p at a constant temperature of the crystal. (b) Shift Δ ν s , PM divided by the shift, Δ T , of the crystal temperature from T, given as a function of crystal temperature T for a constant λ p . The dots indicate the operation point T = 57.2 °C , λ p = 797.27 nm . The curves were calculated from the phase-matching curves (Fig. 1) by using linear approximation.

Fig. 4
Fig. 4

(a) Measured spectrum of the all-mirror OPO at T = 57.2 °C , λ p = 797.27 nm . (b) Measured spectra of the BG-OPO. Signal wavelength λ s is fixed to 1584 nm by the BG. Scanning of ν THz = | ν s ν i | from 1 THz (spectrum 1) to 4 THz (spectrum 9) was achieved by varying the operating conditions from T = 19.2 °C , λ p = 794.36 nm to T = 95.4 °C , λ p = 800.57 nm , respectively.

Metrics