Abstract

Secondary photorefractive centers in Sb-doped Sn2P2S6 have a lifetime comparable to the formation time of the space-charge grating. This considerably affects the dynamics of two-beam coupling and results in a new type of transient gain enhancement for preilluminated samples.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. A. Brost, R. A. Motes, and J. R. Rotge, J. Opt. Soc. Am. B 5, 1879 (1988).
    [CrossRef]
  2. L. Holtmann, Phys. Status Solidi A 113, K89 (1989).
    [CrossRef]
  3. P. Tayebati and D. Mahgerefteh, J. Opt. Soc. Am. B 8, 1053 (1991).
    [CrossRef]
  4. S. Odoulov, A. Shumelyuk, U. Hellwig, R. Rupp, and A. Grabar, J. Opt. Soc. Am. B 13, 2352 (1996).
    [CrossRef]
  5. T. Bach, M. Jazbinsek, G. Montemezzani, P. Günter, A. Grabar, and Yu. Vysochanskii, J. Opt. Soc. Am. B 24, 1535 (2007).
    [CrossRef]
  6. A. Grabar, M. Jazbinsek, A. Shumelyuk, Yu. M. Vysochanskii, G. Montemezzani, and P. Günter, in Photorefractive Materials and Their Applications 2, P.Günter and J.-P.Huignard, eds. (Springer, 2007), pp. 327–362.
    [CrossRef]
  7. A. Shumelyuk, M. Wesner, M. Imlau, and S. Odoulov, Appl. Phys. B 95, 497 (2009).
    [CrossRef]
  8. A. Shumelyuk, S. Odoulov, G. Cook, and D. R. Evans, Opt. Lett. 34, 2126 (2009).
    [CrossRef] [PubMed]
  9. A. Shumelyuk, D. Barilov, M. Imlau, A. Grabar, I. Stoyka, and Yu. Vysochanskii, Opt. Mater. 30, 1555 (2008).
    [CrossRef]
  10. Y. Wakayama, A. Okamoto, K. Shimayabu, Y. Koijima, and A. Grabar, Proc. SPIE 7212, Q1 (2009).

2009 (3)

A. Shumelyuk, M. Wesner, M. Imlau, and S. Odoulov, Appl. Phys. B 95, 497 (2009).
[CrossRef]

Y. Wakayama, A. Okamoto, K. Shimayabu, Y. Koijima, and A. Grabar, Proc. SPIE 7212, Q1 (2009).

A. Shumelyuk, S. Odoulov, G. Cook, and D. R. Evans, Opt. Lett. 34, 2126 (2009).
[CrossRef] [PubMed]

2008 (1)

A. Shumelyuk, D. Barilov, M. Imlau, A. Grabar, I. Stoyka, and Yu. Vysochanskii, Opt. Mater. 30, 1555 (2008).
[CrossRef]

2007 (1)

1996 (1)

1991 (1)

1989 (1)

L. Holtmann, Phys. Status Solidi A 113, K89 (1989).
[CrossRef]

1988 (1)

Bach, T.

Barilov, D.

A. Shumelyuk, D. Barilov, M. Imlau, A. Grabar, I. Stoyka, and Yu. Vysochanskii, Opt. Mater. 30, 1555 (2008).
[CrossRef]

Brost, G. A.

Cook, G.

Evans, D. R.

Grabar, A.

Y. Wakayama, A. Okamoto, K. Shimayabu, Y. Koijima, and A. Grabar, Proc. SPIE 7212, Q1 (2009).

A. Shumelyuk, D. Barilov, M. Imlau, A. Grabar, I. Stoyka, and Yu. Vysochanskii, Opt. Mater. 30, 1555 (2008).
[CrossRef]

T. Bach, M. Jazbinsek, G. Montemezzani, P. Günter, A. Grabar, and Yu. Vysochanskii, J. Opt. Soc. Am. B 24, 1535 (2007).
[CrossRef]

S. Odoulov, A. Shumelyuk, U. Hellwig, R. Rupp, and A. Grabar, J. Opt. Soc. Am. B 13, 2352 (1996).
[CrossRef]

A. Grabar, M. Jazbinsek, A. Shumelyuk, Yu. M. Vysochanskii, G. Montemezzani, and P. Günter, in Photorefractive Materials and Their Applications 2, P.Günter and J.-P.Huignard, eds. (Springer, 2007), pp. 327–362.
[CrossRef]

Günter, P.

T. Bach, M. Jazbinsek, G. Montemezzani, P. Günter, A. Grabar, and Yu. Vysochanskii, J. Opt. Soc. Am. B 24, 1535 (2007).
[CrossRef]

A. Grabar, M. Jazbinsek, A. Shumelyuk, Yu. M. Vysochanskii, G. Montemezzani, and P. Günter, in Photorefractive Materials and Their Applications 2, P.Günter and J.-P.Huignard, eds. (Springer, 2007), pp. 327–362.
[CrossRef]

Hellwig, U.

Holtmann, L.

L. Holtmann, Phys. Status Solidi A 113, K89 (1989).
[CrossRef]

Imlau, M.

A. Shumelyuk, M. Wesner, M. Imlau, and S. Odoulov, Appl. Phys. B 95, 497 (2009).
[CrossRef]

A. Shumelyuk, D. Barilov, M. Imlau, A. Grabar, I. Stoyka, and Yu. Vysochanskii, Opt. Mater. 30, 1555 (2008).
[CrossRef]

Jazbinsek, M.

T. Bach, M. Jazbinsek, G. Montemezzani, P. Günter, A. Grabar, and Yu. Vysochanskii, J. Opt. Soc. Am. B 24, 1535 (2007).
[CrossRef]

A. Grabar, M. Jazbinsek, A. Shumelyuk, Yu. M. Vysochanskii, G. Montemezzani, and P. Günter, in Photorefractive Materials and Their Applications 2, P.Günter and J.-P.Huignard, eds. (Springer, 2007), pp. 327–362.
[CrossRef]

Koijima, Y.

Y. Wakayama, A. Okamoto, K. Shimayabu, Y. Koijima, and A. Grabar, Proc. SPIE 7212, Q1 (2009).

Mahgerefteh, D.

Montemezzani, G.

T. Bach, M. Jazbinsek, G. Montemezzani, P. Günter, A. Grabar, and Yu. Vysochanskii, J. Opt. Soc. Am. B 24, 1535 (2007).
[CrossRef]

A. Grabar, M. Jazbinsek, A. Shumelyuk, Yu. M. Vysochanskii, G. Montemezzani, and P. Günter, in Photorefractive Materials and Their Applications 2, P.Günter and J.-P.Huignard, eds. (Springer, 2007), pp. 327–362.
[CrossRef]

Motes, R. A.

Odoulov, S.

Okamoto, A.

Y. Wakayama, A. Okamoto, K. Shimayabu, Y. Koijima, and A. Grabar, Proc. SPIE 7212, Q1 (2009).

Rotge, J. R.

Rupp, R.

Shimayabu, K.

Y. Wakayama, A. Okamoto, K. Shimayabu, Y. Koijima, and A. Grabar, Proc. SPIE 7212, Q1 (2009).

Shumelyuk, A.

A. Shumelyuk, S. Odoulov, G. Cook, and D. R. Evans, Opt. Lett. 34, 2126 (2009).
[CrossRef] [PubMed]

A. Shumelyuk, M. Wesner, M. Imlau, and S. Odoulov, Appl. Phys. B 95, 497 (2009).
[CrossRef]

A. Shumelyuk, D. Barilov, M. Imlau, A. Grabar, I. Stoyka, and Yu. Vysochanskii, Opt. Mater. 30, 1555 (2008).
[CrossRef]

S. Odoulov, A. Shumelyuk, U. Hellwig, R. Rupp, and A. Grabar, J. Opt. Soc. Am. B 13, 2352 (1996).
[CrossRef]

A. Grabar, M. Jazbinsek, A. Shumelyuk, Yu. M. Vysochanskii, G. Montemezzani, and P. Günter, in Photorefractive Materials and Their Applications 2, P.Günter and J.-P.Huignard, eds. (Springer, 2007), pp. 327–362.
[CrossRef]

Stoyka, I.

A. Shumelyuk, D. Barilov, M. Imlau, A. Grabar, I. Stoyka, and Yu. Vysochanskii, Opt. Mater. 30, 1555 (2008).
[CrossRef]

Tayebati, P.

Vysochanskii, Yu.

A. Shumelyuk, D. Barilov, M. Imlau, A. Grabar, I. Stoyka, and Yu. Vysochanskii, Opt. Mater. 30, 1555 (2008).
[CrossRef]

T. Bach, M. Jazbinsek, G. Montemezzani, P. Günter, A. Grabar, and Yu. Vysochanskii, J. Opt. Soc. Am. B 24, 1535 (2007).
[CrossRef]

Vysochanskii, Yu. M.

A. Grabar, M. Jazbinsek, A. Shumelyuk, Yu. M. Vysochanskii, G. Montemezzani, and P. Günter, in Photorefractive Materials and Their Applications 2, P.Günter and J.-P.Huignard, eds. (Springer, 2007), pp. 327–362.
[CrossRef]

Wakayama, Y.

Y. Wakayama, A. Okamoto, K. Shimayabu, Y. Koijima, and A. Grabar, Proc. SPIE 7212, Q1 (2009).

Wesner, M.

A. Shumelyuk, M. Wesner, M. Imlau, and S. Odoulov, Appl. Phys. B 95, 497 (2009).
[CrossRef]

Appl. Phys. B (1)

A. Shumelyuk, M. Wesner, M. Imlau, and S. Odoulov, Appl. Phys. B 95, 497 (2009).
[CrossRef]

J. Opt. Soc. Am. B (4)

Opt. Lett. (1)

Opt. Mater. (1)

A. Shumelyuk, D. Barilov, M. Imlau, A. Grabar, I. Stoyka, and Yu. Vysochanskii, Opt. Mater. 30, 1555 (2008).
[CrossRef]

Phys. Status Solidi A (1)

L. Holtmann, Phys. Status Solidi A 113, K89 (1989).
[CrossRef]

Proc. SPIE (1)

Y. Wakayama, A. Okamoto, K. Shimayabu, Y. Koijima, and A. Grabar, Proc. SPIE 7212, Q1 (2009).

Other (1)

A. Grabar, M. Jazbinsek, A. Shumelyuk, Yu. M. Vysochanskii, G. Montemezzani, and P. Günter, in Photorefractive Materials and Their Applications 2, P.Günter and J.-P.Huignard, eds. (Springer, 2007), pp. 327–362.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Temporal variation of the probe beam intensity after pre-exposure of the thick sample to the strong pump beam. Time traces from 1 to 6 correspond to time delays of 1, 10, 25, 50, 100, and 200 s between switching off the pump beam and switching on the probe beam, respectively. I probe 0 = 3 mW / cm 2 and I pump = 2 W / cm 2 .

Fig. 2
Fig. 2

Temporal variation of the transmitted probe beam power after pre-exposure of the sample to the strong pump beam. Time traces from 1 to 7 correspond to the incident probe intensities 17, 7, 2.2, 0.75, 0.25, 0.08, and 0.04 mW / cm 2 , respectively. Δ t = 0.5 s , I pump = 2 W / cm 2 , thin sample.

Fig. 3
Fig. 3

Temporal variation of the signal intensity during grating (a and b) recording and (c and d) erasure. For a, the signal beam is introduced at t = 0 to the sample pre-exposed with the strong pump beam, while for b, both beams are switched on at t = 0 . c and d show the diffracted beam intensity when the signal beam is switched off at t = 0 , after saturation is reached in a and b. Λ = 0.8 μm , I pump = 2 W / cm 2 , thin sample.

Fig. 4
Fig. 4

Arrhenius plot for determination of the activation energy of secondary centers. The decay rates, τ 1 , are extracted from the dependences similar to those shown in Fig. 1, but measured at different temperatures.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

I s = I s 0 I tf I cf ,
I tf ( t ) N eff exp ( t / τ sec ) .

Metrics