Abstract

Active phase control in fiber amplifiers is of considerable interest for low-noise single-frequency amplifiers and for coherent beam combining. We demonstrate phase control at 1064nm by use of an erbium-doped fiber. We investigated the phase shift by guiding the beam through an erbium-doped fiber amplifier in a Mach–Zehnder configuration and applied the results to stabilize the relative phase of two ytterbium-doped fiber amplifiers. To the best of our knowledge, this is the first demonstration of an all-fiber coherent beam combining at 1064nm employing an erbium-doped fiber as a phase actuator.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. C. Brown and H. J. Hoffman, IEEE J. Quantum Electron. 37, 207 (2001).
    [CrossRef]
  2. M. K. Davis, M. F. J. Digonnet, and R. H. Pantell, J. Lightwave Technol. 16, 1013 (1998).
    [CrossRef]
  3. M. K. Davis and M. F. J. Digonnet, J. Lightwave Technol. 18, 161 (2000).
    [CrossRef]
  4. M. J. F. Digonnet, R. W. Sadowski, H. J. Shaw, and R. H. Pantell, Opt. Fiber Technol. 3, 44 (1997).
    [CrossRef]
  5. R. H. Pantell, M. F. J. Digonnet, R. W. Sadowski, and H. J. Shaw, J. Lightwave Technol. 11, 1416 (1993).
    [CrossRef]
  6. J. W. Arkwright, P. Elango, G. R. Atkins, T. Whitbread, and M. J. F. Digonnet, J. Lightwave Technol. 16, 798 (1998).
    [CrossRef]
  7. M. J. F. Digonnet, R. W. Sadowski, H. J. Shaw, and R. H. Pantell, J. Lightwave Technol. 15, 299 (1997).
    [CrossRef]
  8. A. A. Fotiadi, N. Zakharov, O. L. Antipov, and P. Mégret, Opt. Lett. 34, 3574 (2009).
    [CrossRef] [PubMed]
  9. A. A. Fotiadi, O. Antipov, and P. Mégret, in European Conference on Lasers and Electro-Optics (Optical Society of America, 2009), paper CJ3_2.
  10. A. A. Fotiadi, O. L. Antipov, and P. Mégret, Opt. Express 16, 12658 (2008).
    [PubMed]
  11. D. C. Brown, IEEE J. Quantum Electron. 34, 560 (1998).
    [CrossRef]

2009

2008

2001

D. C. Brown and H. J. Hoffman, IEEE J. Quantum Electron. 37, 207 (2001).
[CrossRef]

2000

1998

1997

M. J. F. Digonnet, R. W. Sadowski, H. J. Shaw, and R. H. Pantell, J. Lightwave Technol. 15, 299 (1997).
[CrossRef]

M. J. F. Digonnet, R. W. Sadowski, H. J. Shaw, and R. H. Pantell, Opt. Fiber Technol. 3, 44 (1997).
[CrossRef]

1993

R. H. Pantell, M. F. J. Digonnet, R. W. Sadowski, and H. J. Shaw, J. Lightwave Technol. 11, 1416 (1993).
[CrossRef]

Antipov, O.

A. A. Fotiadi, O. Antipov, and P. Mégret, in European Conference on Lasers and Electro-Optics (Optical Society of America, 2009), paper CJ3_2.

Antipov, O. L.

Arkwright, J. W.

Atkins, G. R.

Brown, D. C.

D. C. Brown and H. J. Hoffman, IEEE J. Quantum Electron. 37, 207 (2001).
[CrossRef]

D. C. Brown, IEEE J. Quantum Electron. 34, 560 (1998).
[CrossRef]

Davis, M. K.

Digonnet, M. F. J.

Digonnet, M. J. F.

J. W. Arkwright, P. Elango, G. R. Atkins, T. Whitbread, and M. J. F. Digonnet, J. Lightwave Technol. 16, 798 (1998).
[CrossRef]

M. J. F. Digonnet, R. W. Sadowski, H. J. Shaw, and R. H. Pantell, J. Lightwave Technol. 15, 299 (1997).
[CrossRef]

M. J. F. Digonnet, R. W. Sadowski, H. J. Shaw, and R. H. Pantell, Opt. Fiber Technol. 3, 44 (1997).
[CrossRef]

Elango, P.

Fotiadi, A. A.

A. A. Fotiadi, N. Zakharov, O. L. Antipov, and P. Mégret, Opt. Lett. 34, 3574 (2009).
[CrossRef] [PubMed]

A. A. Fotiadi, O. L. Antipov, and P. Mégret, Opt. Express 16, 12658 (2008).
[PubMed]

A. A. Fotiadi, O. Antipov, and P. Mégret, in European Conference on Lasers and Electro-Optics (Optical Society of America, 2009), paper CJ3_2.

Hoffman, H. J.

D. C. Brown and H. J. Hoffman, IEEE J. Quantum Electron. 37, 207 (2001).
[CrossRef]

Mégret, P.

A. A. Fotiadi, N. Zakharov, O. L. Antipov, and P. Mégret, Opt. Lett. 34, 3574 (2009).
[CrossRef] [PubMed]

A. A. Fotiadi, O. L. Antipov, and P. Mégret, Opt. Express 16, 12658 (2008).
[PubMed]

A. A. Fotiadi, O. Antipov, and P. Mégret, in European Conference on Lasers and Electro-Optics (Optical Society of America, 2009), paper CJ3_2.

Pantell, R. H.

M. K. Davis, M. F. J. Digonnet, and R. H. Pantell, J. Lightwave Technol. 16, 1013 (1998).
[CrossRef]

M. J. F. Digonnet, R. W. Sadowski, H. J. Shaw, and R. H. Pantell, J. Lightwave Technol. 15, 299 (1997).
[CrossRef]

M. J. F. Digonnet, R. W. Sadowski, H. J. Shaw, and R. H. Pantell, Opt. Fiber Technol. 3, 44 (1997).
[CrossRef]

R. H. Pantell, M. F. J. Digonnet, R. W. Sadowski, and H. J. Shaw, J. Lightwave Technol. 11, 1416 (1993).
[CrossRef]

Sadowski, R. W.

M. J. F. Digonnet, R. W. Sadowski, H. J. Shaw, and R. H. Pantell, J. Lightwave Technol. 15, 299 (1997).
[CrossRef]

M. J. F. Digonnet, R. W. Sadowski, H. J. Shaw, and R. H. Pantell, Opt. Fiber Technol. 3, 44 (1997).
[CrossRef]

R. H. Pantell, M. F. J. Digonnet, R. W. Sadowski, and H. J. Shaw, J. Lightwave Technol. 11, 1416 (1993).
[CrossRef]

Shaw, H. J.

M. J. F. Digonnet, R. W. Sadowski, H. J. Shaw, and R. H. Pantell, J. Lightwave Technol. 15, 299 (1997).
[CrossRef]

M. J. F. Digonnet, R. W. Sadowski, H. J. Shaw, and R. H. Pantell, Opt. Fiber Technol. 3, 44 (1997).
[CrossRef]

R. H. Pantell, M. F. J. Digonnet, R. W. Sadowski, and H. J. Shaw, J. Lightwave Technol. 11, 1416 (1993).
[CrossRef]

Whitbread, T.

Zakharov, N.

IEEE J. Quantum Electron.

D. C. Brown and H. J. Hoffman, IEEE J. Quantum Electron. 37, 207 (2001).
[CrossRef]

D. C. Brown, IEEE J. Quantum Electron. 34, 560 (1998).
[CrossRef]

J. Lightwave Technol.

Opt. Express

Opt. Fiber Technol.

M. J. F. Digonnet, R. W. Sadowski, H. J. Shaw, and R. H. Pantell, Opt. Fiber Technol. 3, 44 (1997).
[CrossRef]

Opt. Lett.

Other

A. A. Fotiadi, O. Antipov, and P. Mégret, in European Conference on Lasers and Electro-Optics (Optical Society of America, 2009), paper CJ3_2.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Fiber-based Mach–Zehnder interferometer used in the experiment. The Yb amplifiers (gray area) were used only in the beam combining experiments. WDM, wavelength-division multiplexer.

Fig. 2
Fig. 2

(a) Phase shift induced by the erbium fiber ( 40 mW average pump power ± 8 mW step modulation). Fast, nonlinear refractive index change; slow, thermal drift. (b) Pump modulation (fixed modulation power). (c) Pump modulation (increased modulation power relative to pump power). (d) Seed modulation with and without pump.

Fig. 3
Fig. 3

Long-term stability of the lock: (a) output power of the locked interferometer and the corresponding control signal, (b) unstabilized output.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

Φ = arcsin ( 2 U ( t ) U max U min U max U min ) .
d N 2 d t = P Pump , In P Pump , Out h ν Pump P Sig , In P Sig , Out h ν Sig P ASE h ν ASE N 2 τ .

Metrics