Abstract

We propose and experimentally demonstrate a method for temperature sensing using stimulated Brillouin scattering (SBS)-based slow light. The approach relies on temperature dependence of the Brillouin frequency shift in a fiber, hence the time delay of an input probe pulse. By measuring the delay, temperature sensing can be realized. We achieve temperature measurement in a 100m single-mode fiber (SMF) using a cw pump. The main temperature-sensing range is 18°C from the room temperature, limited by the SBS gain bandwidth. To apply the technique for measurement of a shorter fiber segment, a pulsed pump is used to introduce SBS slow light. Temperature sensing is achieved in a 2m SMF with a main sensing range of around 25°C. The scheme is easily implemented, exhibits a relatively high temperature sensitivity with a resolution better than 1.0°C, and is potentially applicable for distributed sensing.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. M. Maughan, H. H. Kee, and T. P. Newson, Opt. Lett. 26, 331 (2001).
    [CrossRef]
  2. S. M. Lopez, M. A. Camas, F. Rodriguez, P. Cooredera, J. D. A. Castañon, L. Thévenaz, and M. G. Herraez, Opt. Express 18, 18769 (2010).
    [CrossRef]
  3. D. Garus, K. Krebber, F. Schliep, and T. Gogolla, Opt. Lett. 21, 1402 (1996).
    [CrossRef] [PubMed]
  4. M. G. Herráez, K. Y. Song, and L. Thévenaz, Appl. Phys. Lett. 87, 081113 (2005).
    [CrossRef]
  5. M. G. Herráez, K. Y. Song, and L. Thévenaz, Opt. Express 14, 1395 (2006).
    [CrossRef]
  6. A. Cheng, M. P. Fok, and C. Shu, Opt. Lett. 33, 2596 (2008).
    [CrossRef] [PubMed]
  7. S. Chin and L. Thévenaz, Opt. Lett. 34, 707 (2009).
    [CrossRef] [PubMed]
  8. G. P. Agrawal, Nonlinear Fiber Optics, 4th ed. (Elsevier Pte Ltd., 2009).
  9. A. Yeniay, M.-M. Delavaux, and J. Toulouse, J. Lightwave Technol. 20, 1425 (2002).
    [CrossRef]

2010 (1)

2009 (1)

2008 (1)

2006 (1)

2005 (1)

M. G. Herráez, K. Y. Song, and L. Thévenaz, Appl. Phys. Lett. 87, 081113 (2005).
[CrossRef]

2002 (1)

2001 (1)

1996 (1)

Agrawal, G. P.

G. P. Agrawal, Nonlinear Fiber Optics, 4th ed. (Elsevier Pte Ltd., 2009).

Camas, M. A.

Castañon, J. D. A.

Cheng, A.

Chin, S.

Cooredera, P.

Delavaux, M.-M.

Fok, M. P.

Garus, D.

Gogolla, T.

Herraez, M. G.

Herráez, M. G.

M. G. Herráez, K. Y. Song, and L. Thévenaz, Opt. Express 14, 1395 (2006).
[CrossRef]

M. G. Herráez, K. Y. Song, and L. Thévenaz, Appl. Phys. Lett. 87, 081113 (2005).
[CrossRef]

Kee, H. H.

Krebber, K.

Lopez, S. M.

Maughan, S. M.

Newson, T. P.

Rodriguez, F.

Schliep, F.

Shu, C.

Song, K. Y.

M. G. Herráez, K. Y. Song, and L. Thévenaz, Opt. Express 14, 1395 (2006).
[CrossRef]

M. G. Herráez, K. Y. Song, and L. Thévenaz, Appl. Phys. Lett. 87, 081113 (2005).
[CrossRef]

Thévenaz, L.

Toulouse, J.

Yeniay, A.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic illustration of SBS slow-light-based temperature sensing scheme.

Fig. 2
Fig. 2

(a) Measured Brillouin gain spectrum under different temperatures using the heterodyne method, (b) measured Stokes frequency shift versus temperature.

Fig. 3
Fig. 3

Experimental setup for temperature sensing. PC, polarization controller; VOA, variable optical attenuator; BPF, band pass filter; EOM, electro-optic modulator.

Fig. 4
Fig. 4

(a) Measured output pulses at different temperatures of the 100 m SMF, (b) experimental data (dark squares) and fitted curves on the time delay versus temperature at three different initial values of SBS gain: 20, 30, and 40 dB .

Fig. 5
Fig. 5

(a) Measured output pulses at different temperatures of the 2 m SMF, (b) experimental data (dark squares) and fitted curves on the time delay versus temperature at 20 dB initial SBS gain.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

Δ t = Δ t m × 1 δ 2 ( 1 + δ 2 ) 2 = ( g p L P p Γ B A eff ) 1 δ 2 ( 1 + δ 2 ) 2 ,
δ = Δ Ω Γ B / 2 = 2 α [ MHz / ° C ] × ( T T 0 ) [ ° C ] ( Γ B / 2 π ) [ MHz ] ,

Metrics