Abstract

We present the fabrication and characterization of high-quality-factor (Q) Si3N4 photonic crystal nanobeam cavities at visible wavelengths for coupling to nitrogen-vacancy centers in a cavity QED system. Confocal microphotoluminescence analysis of the nanobeam cavities demonstrates quality factors up to Q ~ 55,000, which are limited by the resolution of our grating spectrometer. This is a 1-order-of-magnitude improvement over previous SiNx cavities at this important wavelength range. We also demonstrate coarse tuning of cavity resonances across 600700nm by lithographically scaling the size of fabricated devices.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (4)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription